Neural Signal Processing in the Median Protocerebrum of the Bee

  • Jochen Erber
  • Uwe Homberg
Conference paper


As in most animals, the major sense organs of the bee, the compound eyes, the ocelli and the antennae are located on the head of the animal. Therefore, large parts of the head ganglion, in particular the optic and antennal lobes, are primarily concerned with the processing of sensory information. We will not deal with the neurophysiology of these sensory neuropils of the brain here and the reader is referred to the chapters by Ribi, Hertel and Goodman in this volume. However, the various sensory information is funnelled into the median protocerebrum and from there via descending interneurons to motor centers of the thoracic ganglia. The various sensory inputs are integrated primarily in the lateral parts of the median protocerebrum and linked to specific descending pathways. In addition, the brain contains two structures, the paired mushroom bodies (MB) and the central complex (cc) (Fig. 1), which have no equivalents in the ganglia. They seem to be hierarchically parallel structures in that they are largely superimposed on the sensory to motor-center pathways in the lateral protocerebrum. Recordings and stainings of single cells in the various brain areas, as well as field potential measurements, more detailed anatomical analyses, and recently immunocytochemical and autoradiographic investigations have specified our knowledge of the physiological roles and relationships of the mushroom bodies, the central complex and the ‘diffuse’ protocerebral lobes in the brain of the honeybee.


Central Complex Mushroom Body Antennal Lobe Lower Division Lateral Protocerebrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Bicker, G.; Schäfer, S.; and Kingan, T.G. 1985. Mushroom body feedback interneurons in the honeybee show GABA-like immunoreactivity. Brain Res. 360; 394–397.PubMedCrossRefGoogle Scholar
  2. (2).
    Boeckh, J.; Ernst, K.D.; Sass, H.; and Waldow, U. 1984. Anatomical and physiological characteristics of individual neurons in the central antennal pathway of insects. J. Insect Physiol. 30: 15–26.CrossRefGoogle Scholar
  3. (3).
    Erber, J. 1981. Neural correlates of learning in the honeybee. TINS 4: 270–273.Google Scholar
  4. (4).
    Erber, J. 1983. The search for neural correlates of learning in the honeybee. In Neuroethology and Behavioral Physiology, ed. F. Huber and H. Markl, pp. 216–227. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  5. (5).
    Erber, J.; Homberg, U.; and Gronenberg, W., in press. The functional roles of the mushroom bodies in insects. In Arthropod Brain: Its Evolution, Development, Structure, and Functions, ed. A.P. Gupta. New York: J. Wiley.Google Scholar
  6. (6).
    Erber, J.; Masuhr, Th.; and Menzel, R. 1980. Localisation of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5: 343–358.CrossRefGoogle Scholar
  7. (7).
    Gronenberg, W. 1984. Das Protocerebrum der Honigbiene im Bereich des Pilzkörpers — eine neurophysiologisch-anatomische Charakterisierung. Dissertation, Freie Universität Berlin.Google Scholar
  8. (8).
    Heisenberg, M.; Borst, A.; Wagner, S.; and Byers, D. 1985. Drosophila mushroom body mutants are deficient in olfactory learning. J. Neurogen. 2: 1–30.CrossRefGoogle Scholar
  9. (9).
    Homberg, U. 1985. Das mediane Protocerebrum der Honigbiene (Apis mellifica) im Bereich des Zentralkörpers: Physiologische und morphologische Charakterisierung. Dissertation, Freie Universität Berlin.Google Scholar
  10. (10).
    Homberg, U. 1984. Processing of antennal information in extrinsic mushroom body neurons in the bee brain. J. Comp. Physiol. 154: 825–836.Google Scholar
  11. (11).
    Homberg, U. 1985. Interneurons of the central complex in the bee brain ( Apis mellifica, L.). J. Insect Physiol. 31: 251–264.CrossRefGoogle Scholar
  12. (12).
    Menzel, R.; Erber, J.; and Masuhr, Th. 1974. Learning and memory in the honeybee. In Experimental Analysis of Insect Behavior, ed. L. Barton-Browne, pp. 195–217. Berlin, Heidelberg, New York: Springer-VerlagGoogle Scholar
  13. (13).
    Milde, J. 1982. Elektrophysiologische und anatomische Untersuchungen an Interneuronen erster und höherer Ordnung des Ocellensystems der Biene (Apis mellifica carnica). Dissertation, Freie Universität Berlin.Google Scholar
  14. (14).
    Mobbs, P.G. 1982. The brain of the honeybee Apis mellifera. I. The connections and spatial organization of the mushroom bodies. Phil. Trans. Roy. Soc. Lond. Ser. B 298: 309–354.Google Scholar
  15. (15).
    Schäfer, S., and Bicker, G. 1986. Distribution of GABA-like immunoreactivity in the brain of the honeybee. J. Comp. Neurol. 246: 287–300.PubMedCrossRefGoogle Scholar
  16. (16).
    Scheidier, A.; Kaulen, P.; Brüning, G.; and Erber, J. 1986. Autoradiographic localization of octopamine and serotonin binding sites in the brain of the honeybee (Apis mellifera L.) Verh. Dtsch. Zool. Ges. 79: in press.Google Scholar
  17. (17).
    Schildberger, K. 1981. Some physiological features of mushroom body linked fibers in the house cricket brain. Naturwissenschaften 67: 623.CrossRefGoogle Scholar
  18. (18).
    Schildberger, K. 1984. Multimodal interneurons in the cricket brain: properties of identified extrinsic mushroom body cells. J. Comp. Physiol. 154: 71–79.Google Scholar
  19. (19).
    Schürmann, F.W. 1982. On the synaptic connections, tracts and compartments in the brain of the honeybee. In The Biology of Social Insects, ed. M.D. Breed, C.D. Michener, and H.E. Evans, pp. 390–394. Boulder, Colorado: Westview Press.Google Scholar
  20. (20).
    Schürmann, F.W., and Klemm, N. 1984. Serotonin-immunoreactive neurons in the brain of the honeybee. J. Comp. Neurol. 225: 570–580.CrossRefGoogle Scholar
  21. (21).
    Strausfeld, N.J., and Bacon, J.P. 1983. Multimodal convergence in the central nervous system of dipterous insects. Fortschritte der Zoologie 28: 47–76.Google Scholar

Copyright information

© Springer-Verlag Berlin Heildelberg 1987

Authors and Affiliations

  • Jochen Erber
    • 1
  • Uwe Homberg
    • 1
  1. 1.Institut für BiologieTechnischen Universität BerlinBerlin 10Germany

Personalised recommendations