Motion Sensitive Descending Interneurons, Ocellar LD Neurons and Neck Motoneurons in the Bee: A Neural Substrate for Visual Course Control in Apis mellifera

  • Lesley J. Goodman
  • William A. Fletcher
  • Richard G. Guy
  • Peter G. Mobbs
  • Christopher D. J. Pomfrett


The response characteristics of 12, identified, motion-sensitive descending interneurons in the brain of Apis mellifera suggests that they form a significant part of the neural substrate for visual course control. The neurons are sensitive to wide field-motion of the visual surround, non-habituating, non-adapting, velocity sensitive and unresponsive to small target movement. Ten of them show broad band directional sensitivity. Analysis of the preferred directions of the cells shows a polarization towards either the vertical or the horizontal with an asymmetrical distribution of units within one connective. Differences in sensitivity to pitch and to roll simulations is found in some of the vertically sensitive cells. At least one ocellar LD neuron also carries information about vertical movement over the compound eye. Suboesophageal neck motoneurons are also found to display directional sensitivity to wide field motion.


Apis Mellifera Mushroom Body Polar Plot Directional Sensitivity Lobula Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Batschelet, E. 1981. Circular Statistics in Biology. London and New York: Academic Press.Google Scholar
  2. (2).
    De Voe, R.D.; Kaiser, W.; Ohm, J.; and Stone, L.S. 1982. Horizontal movement detectors of honeybees. Directionally-selective visual neurons in the lobula and brain. J. comp. Physiol. 147: 155–170.CrossRefGoogle Scholar
  3. (3).
    Fletcher, W.A., and Goodman, L.J. 1982. The central projections of the hairplate receptors of the episternal cone, petiole and mesocoxa of the honeybee. In The Biology of Social Insects, eds. M.D. Breed, C.D. Michener and H.E. Evans. Boulder, Colorado: Westview Press.Google Scholar
  4. (4).
    Fletcher, W.A.; Goodman, L.J.; Guy, R.G.; and Mobbs, P.G. 1984. Horizontal and vertical motion detectors in the ventral nerve cord of the honeybee, Apis mellifera. J. Physiol. 351: 15.Google Scholar
  5. (5).
    Fletcher, W.A.; Guy, R.G.; Mobbs, P.G.; and Goodman, L.G. Directionally selective motion sensitive descending interneurons in the brain of the honeybee, Apis mellifera. J. comp. Physiol., in prep.Google Scholar
  6. (6).
    Goodman, L.J. 1965. The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust, Schistocerca gregaria. J. Exp. Biol. 42: 385–407.Google Scholar
  7. (7).
    Hausen, K. 1981. Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. pp. 49–70. Stuttgart: Gustav Fischer Verlag.Google Scholar
  8. (8).
    Kaiser, W., and Bishop, L.G. 1970. Directionally selective motion detecting units in the optic lobe of the honeybee. Z. Vergl. Physiol. 67: 403–413.CrossRefGoogle Scholar
  9. (9).
    Kien, J. 1975. Neuronal mechanisms subserving directional selectivity in the locust optomotor system. J. comp. Physiol. 102: 337–355.Google Scholar
  10. (10).
    Kien, J. 1977. Comparison of sensory input with motor output in the locust optomotor system. J. comp. Physiol. 113: 161–179.Google Scholar
  11. (11).
    Kunze, P. 1961. Untersuchung des Bewegungsehens fixiert fliegender Bienen. Z. Vergl. Physiol. 44: 656–684.Google Scholar
  12. (12).
    Land, M.F. 1975. Head movements and fly vision. In The Compound Eye and Vision of Insects, ed. Land, M.F, pp. 469–489. Oxford University Press.Google Scholar
  13. (13).
    Lehrer, M.; Wehner, R.; and Srinivasin, M. 1985. Visual scanning behaviour in honeybees. J. comp. Physiol. 157: 405–415.CrossRefGoogle Scholar
  14. (14).
    Markl, H. 1966. Peripheres Nervensystem und Muskulatur im Thorax der Arbeiterin von Apis mellifera L., Formica polyctena Foerster und Vespa vulgaris L. unter der Grundplan der Innervierung des Insektenthorax. Zool. Jb. Anat. Bd. 83.S: 107–184.Google Scholar
  15. (15).
    Milde, J. 1984. Ocellar interneurons in the honeybee. Structure and signals of L-neurons. J. comp. Physiol. 154: 683–693.Google Scholar
  16. (16).
    Milde, J. J., and Strausfeld, N. J. 1986. Visuo-motor pathways in arthropods. Giant motion-sensitive neurons connect compound eyes directly to neck muscles in blowflies ( Calliphora erythrocephala ). Naturwiss. 73: 151–154.CrossRefGoogle Scholar
  17. (17).
    Mobbs, P.G. 1984. Neural networks in the mushroom bodies of the honeybee. J. Insect Physiol. 30 (1): 43–58.CrossRefGoogle Scholar
  18. (18).
    Moore, D., and Rankin, M.A. 1982. Direction-sensitive partitioning of the honeybee optomotor system. Physiol Entomol. 7: 25–36.CrossRefGoogle Scholar
  19. (19).
    Olberg, R.M. 1981a. Parallel encoding of direction of wind, head, abdomen and visual pattern movement by single interneurons in the dragonfly. J. comp. Physiol. 142: 27–41.Google Scholar
  20. (20).
    Pan, K.C., and Goodman, L.J. 1977. Ocellar projections within the central nervous system of the worker honey bee, Apis mellifera. Cell & Tissue Res. 176: 505–527.Google Scholar
  21. (21).
    Reichert, H.; Rowell, C.H.F.; and Gris, C. 1985. Course correction circuitry translates feature detection into behavioural action in locusts. Nature 31 (5): 142–144.CrossRefGoogle Scholar
  22. (22).
    Rind, F.C. 1983c. The role of an identified brain neuron in mediating optomotor movements in a moth. J. Exp. Biol. 201: 273–284.Google Scholar
  23. (23).
    Rowell, C.H.F.; Reichert, H.; and Bacon, J.P. 1985. How locusts fly straight. In Feedback and Motor Control in Invertebrates and Vertebrates, eds. W.J.P. Barnes and M.H. Gladden. London: Croom Helm.Google Scholar
  24. (24).
    Strausfeld, N.J.; Bassemir, U.; Singh, R.N.; and Bacon, J.P. 1984. Organizational principles of outputs to dipteran brains. J. Insect Physiol. 30: 73–93.CrossRefGoogle Scholar
  25. (25).
    Taylor, C.P. 1981a. Contribution of compound eyes and ocelli to steering of locusts in flight. I. Behavioural analysis. J. Exp. Biol. 93: 1–18.Google Scholar
  26. (26).
    Wehner, R. 1981. Spatial vision in arthropods. In Handbook of Sensory Physiology: Vision in Invertebrates: C Invertebrate Visual Centres and Behaviour, ed. H. Autrum, VII/6C pp. 288–616. Berlin, Heidelberg, New York: Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heildelberg 1987

Authors and Affiliations

  • Lesley J. Goodman
    • 1
  • William A. Fletcher
    • 1
  • Richard G. Guy
    • 1
  • Peter G. Mobbs
    • 1
  • Christopher D. J. Pomfrett
    • 1
  1. 1.School of Biological SciencesQueen Mary College, University of LondonLondonUK

Personalised recommendations