Advertisement

Sinusoidal Length Change Study of Muscle Contraction and Self-Induced Translation Model of Myosin Motion

  • Toshio Mitsui
  • Katsuzo Wakabayashi
  • Hidehiro Tanaka
  • Takakazu Kobayashi
  • Yutaka Ueno
  • Yoshiyuki Amemiya
  • Hiroyuki Iwamoto
  • Toshiaki Hamanaka
  • Haruo Sugi
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 2)

Abstract

By using synchrotron radiation, it was observed that X-ray diffraction pattern changed markedly when sinusoidal length changes were applied to isometrically contracting frog skeletal muscle [1]. We proposed a model for the filament sliding mechanism in order to explain the obtained data as well as various other data. Basic idea of the model was given briefly in a report [2], Here we discuss the model in more detail and present experimental data which are in agreement with what the model predicts.

Keywords

Thin Filament Muscle Length Myosin Head Thick Filament Release Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Wakabayashi, H. Tanaka, T. Kobayashi, Y. Amemiya, T. Hamanaka, S. Nishizawa, H. Sugi and T. Mitsui: Biophys. J. 49 (1986) 581–584.PubMedCrossRefGoogle Scholar
  2. 2.
    T. Mitsui, H. Sugi, K. Wakabayashi, H. Tanaka, T. Kobayashi, Y. Ueno, Y. Amemiya, H. Iwamoto and T. Hamanaka: Photon Factory Activity Report 3 (1984/85) p.249.Google Scholar
  3. 3.
    H.E. Huxley: Science 164 (1 969) 1356–1366.Google Scholar
  4. 4.
    A.F. Huxley and R.M. Simmons: Nature 233 (1971) 533–538.Google Scholar
  5. 5.
    T. Yanagida: J. Muscle Res. Cell Motility 6 (1985) 43–52.CrossRefGoogle Scholar
  6. 6.
    T. Yanagida: J. Mol. Biol. 146 (1981) 539–360.PubMedCrossRefGoogle Scholar
  7. 7.
    R. Cooke, M.S. Crowder and D.D. Thomas: Nature 300 (1982) 776–778.PubMedCrossRefGoogle Scholar
  8. 8.
    H.E. Huxley, A.R. Faruqi, M. Kress, J. Bordas and M.H.J. Koch: J. Mol. Biol. 158 (1 982 ) 637–684.Google Scholar
  9. 9.
    H.E. Huxley, R.M. Simmons, A.R. Faruqi, M. Kress, J. Bordas and M.H.J. Koch: J. Mol. Biol. 169 (1983) 469–506.PubMedCrossRefGoogle Scholar
  10. 10.
    I. Matsubara, N. Yagi and H. Hashizume: Nature 255 (1975) 728–729.Google Scholar
  11. 11.
    H. Sugi, Y. Amemiya and H. Hashizume: Proc. Japan Adad. 54 (1978) 559–564.CrossRefGoogle Scholar
  12. 12.
    T. Yanagida, T. Arata and F. Oosawa: Nature 316 (1985) 366–369.Google Scholar
  13. 13.
    A.V. Hill: Proc. Roy. Soc. London B159 (1964) 297–318.CrossRefGoogle Scholar
  14. 14.
    R.J. Podolsky, R.St. Onge, L. Yu and R.W. Lymn: Proc. Nat. Acad. Sci. USA 73 (1976) 813–817.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Toshio Mitsui
    • 1
  • Katsuzo Wakabayashi
    • 1
  • Hidehiro Tanaka
    • 2
  • Takakazu Kobayashi
    • 2
  • Yutaka Ueno
    • 1
  • Yoshiyuki Amemiya
    • 3
  • Hiroyuki Iwamoto
    • 2
  • Toshiaki Hamanaka
    • 1
  • Haruo Sugi
    • 2
  1. 1.Department of Biophysical Engineering, Faculty of Engineering ScienceOsaka UniversityToyonaka, OsakaJapan
  2. 2.Department of Physiology, School of MedicineTeikyo UniversityItabashi-ku, TokyoJapan
  3. 3.National Laboratory for High Energy PhysicsPhoton FactoryOho-machi, Tsukuba-gun, IbarakiJapan

Personalised recommendations