Chromatin, Solution Scattering and Perception

  • M. H. J. Koch
  • Z. Sayers
Conference paper
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 2)


In the present paper we draw a parallel between small angle scattering (SAS) experiments and visual perception and illustrate the origin and importance of the: “personal equation” (see Gregory ref. 1) in the design of experiments (i. e. manipulations designed to test a hypothesis based on a priori knowledge) as opposed to measurements (i. e. manipulations designed to obtain a numerical value without reference to its meaning). Similar considerations probably apply to most experimental techniques.


Small Angle Scattering Chromatin Fiber Condensation Mechanism Personal Equation Solution Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Gregory R., (1984) Mind in Science. Penguin (Peregrine) Books, Harmondsworth, UK.Google Scholar
  2. 2).
    Poggio T., Torre V., Koch C., (1985) Computational vision and regularization theory. Nature 317 314–319.PubMedCrossRefGoogle Scholar
  3. 3).
    Perez-Grau L., Bordas J., Koch M.H.J., (1984) Synchrotron radiation X-ray scattering study on solutions and gels. Nucleic Acid Res 12, 2987–2995.PubMedCrossRefGoogle Scholar
  4. 4).
    Bordas J., Perez-Grau L., Koch M.H.J., Nave C., Vega M.C., (1986) The superstructure of chromatin and its condensation mechanism: I Synchrotron radiation X-ray scattering results. Eur J. Biophys. 13, 157–174.CrossRefGoogle Scholar
  5. 5).
    Bordas J., Perez-Grau L., Koch M.H.J., Nave C., Vega M.C., (1986) The superstructure of chromatin and its condensation mechanism: II Theoretical analysis of the X-ray scattering patterns and model calculations. Eur. J. Biophys. 13, 175–186.CrossRefGoogle Scholar
  6. 6).
    Koch M.H.J., Vega M.C., Sayers Z., Michon A.M., (1986) The superstructure of chromatin and its condensation mechanism. HI: Effect of monovalent and divalent cations, X-ray solution scattering and hydrodynamic studies. Eur. J. Biophys. (in press).Google Scholar
  7. 7).
    Sperling L., Tardieu A., (1976) The mass per unit lenght of chromatin by low-angle X-ray scattering. FEBS Lett. 64, 89–91.PubMedCrossRefGoogle Scholar
  8. 8).
    Finch J.T., Klug A., (1976) Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. Usa 73, 1879–1901.CrossRefGoogle Scholar
  9. 9).
    Baudy P., Bram S., (1978) Chromatin fiber dimensions and nucleosome orientation: a neutron scattering investigation. Nucleic Acid Res 5, 3698–3713.Google Scholar
  10. 10).
    Hollandt H., Notbohm H., Riedel F., Harbers E., (1979) Studies of the structure of isolated chromatin in three different solvents. Nucleic Acid Res 6, 2017–2027.PubMedCrossRefGoogle Scholar
  11. 11).
    Suau P., Bradbury E.M., Baldwin J.P., (1979) Higher-order structures of chromatin in solution. Eur. J. Biochem. 97: 593–6602.PubMedCrossRefGoogle Scholar
  12. 12).
    Brust R., Harbers E., (1981) Structural investigations on Isolated Chromatin of Higher-Order Organization. Eur J. Biochem. 117, 609–615.PubMedCrossRefGoogle Scholar
  13. 13).
    Notbohm H., (1986) Comparative Studies on the structure of soluble and insoluble chromatin from chicken erythrocytes. Int. J. Biol. Macromol. 8, 114–120.CrossRefGoogle Scholar
  14. 14).
    Transition of chromatin from the “10 nm” Lower Order Structure, to the “30 nm” Higher Order Structure, as followed by Small Angle X-ray Scattering. J. Mol Biol 193: 709–721.Google Scholar
  15. 15).
    Thoma F., Koller T., Klug A. (1979) Involvement of histone H1 in the organization of the nucleosome and of the salt dependent superstructures of chromatin. J. Cell Biol 83, 403–427.PubMedCrossRefGoogle Scholar
  16. 16).
    Reich M., (1982) PhD Thesis Weizmann Institute of Science - Rehovoth.Google Scholar
  17. 17).
    Whevell (1847) The Philosophy of the Inductive Sciences, 2nd Ed., London.Google Scholar
  18. 18).
    Toynbee A., (1972) A study of History Weathervane Books: New York p 486Google Scholar
  19. 19).
    Gombrich E.H., (1960) “Art and Illusion” Phaidon Press, London, p. 225. Greulich K.O., Wachtel E., Ausio J., Seger D., Eisenberg H., (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. H. J. Koch
    • 1
  • Z. Sayers
    • 1
  1. 1.Hamburg OutstationEuropean Molecular Biology LaboratoryHamburg 52Germany

Personalised recommendations