Advertisement

EXAFS and Structure-Function Relationships in Zinc Proteins

  • C. David Garner
  • Martinus C. Feiters
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 2)

Abstract

Zinc is known to be associated with a large variety of proteins, and is present in enzymes in each of the six categories designed by the International Union of Biochemistry [1], In enzymes, zinc is often thought to play a catalytic role, i. e. to be essential for and directly involved in the catalysis, but also purely non-catalytic (i.e. structural or regulatory) roles have been implied, and in some cases its role is undefined [1]. Unlike manganese, iron, copper, or molybdenum, zinc exists in only one oxidation state, viz. Zn(II). Therefore, it is notably absent from the classes of dioxygen-binding proteins or electron-transfer proteins, and in the oxidoreductases where it is found either catalyses hydride transfer, as in alcohol dehydrogenase [2], or zinc assists another metal in its catalytic action, like copper in Cu, Zn-superoxide dismutase [3], rather than temporarily accommodating an electron, or having dioxygen as a ligand. The general concept of the catalytic role for zinc in enzymes appears to be the polarisation of molecules by virtue of its Lewis acidity. This may be the activation of water in its coordination sphere, e.g. in carbonic anhydrase to release a proton at physiological pH [4], or of a carbonyl function for nucleophilic attack on carbon, e.g. in carboxypeptidase [5], or of an alcohol for proton release and subsequent reactions, e.g. alcohol dehydrogenase [2]. The presence of a catalytic zinc site is typically signalled by the presence in its coordination sphere of a resting water molecule which may be activated or displaced.

Keywords

Coordination Number Carbonic Anhydrase Alcohol Dehydrogenase Nicotinamide Adenine Dinucleotide Sorbitol Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Vallee, B.L. (1983) in Metal Ions in Biology (Spiro, T.G., editor) Vol. V: Zinc Enzymes, Wiley, pp. 1–24Google Scholar
  2. 2).
    Eklund, H. and Brändén, C.-I. (1983) in Ref. 1, pp. 123–152Google Scholar
  3. 3).
    Blackburn, N.J., Hasnain, S.S., Binsted, N., Diakun, G.P., Garner, C.D., and Knowles, P.F. (1984) Biochem. J. 219, 985–990.PubMedGoogle Scholar
  4. 4).
    Lindskog, S. (1983) in Ref. 1, pp. 77–122.Google Scholar
  5. 5).
    Vallee, B.L., Galdes, A., Auld, D.S., and Riordan, J.F. (1983) in Ref. 1, pp. 25–76.Google Scholar
  6. 6).
    Clementi, E., Corongiu, G., Jonsson, B., and Romano, S. (1979) FEBS Lett. 100, 313–317.PubMedCrossRefGoogle Scholar
  7. 7).
    Liljas, A., Kannan, K.K., Bergstén, P.C., Waara, I., Fridborg, B., Strandberg, B., Carlbom, U., Järup, L., Lövgren, S., and Petef, M. (1972) Nature 235, 131–137.Google Scholar
  8. 8).
    Rees, D.C., Lewis, M., Konzatko, R.B., Lipscomb, W.N., and Hardman, K.D. (1981) Proc. Natl. Acad. Sci. USA, 78, 3408–3412.PubMedCrossRefGoogle Scholar
  9. 9).
    Eklund, H., Nordström, B.s Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Soderberg, B.-O., Tapia, O., Bränden, C.-I., and Åkeson, Å. (1976) J. Mol. Biol. 102, 27–59.Google Scholar
  10. 10).
    Richardson, J.S., Thomas, K.A., Rubin, B.H., and Richardson, D.C. (1975) Proc. Natl. Acad. Sci. USA 72, 1349–1353.PubMedCrossRefGoogle Scholar
  11. 11).
    Colman, P.M., Jansonius, J.N., and Matthews, B.W. (1972) J. Mol. Biol. 70, 701–724.PubMedCrossRefGoogle Scholar
  12. 12).
    Prescott, J.M., Wagner, F.W., Holmquist, B., and Vallee, B.L. (1985) Biochemistry 24, 5350–5356.PubMedCrossRefGoogle Scholar
  13. 13).
    Holmquist, B., Kaden, T.A., and Vallee, B.L. (1975) Biochemistry 14, 1454–1461.PubMedCrossRefGoogle Scholar
  14. 14).
    Rosenberg, R.C., Root, C.A., Wang, R.-H., Cerdonio, M., and Gray, H.B. (1973) Proc. Natl. Acad. Sci. USA 70, 161.PubMedCrossRefGoogle Scholar
  15. 15).
    Baldwin, G.S., Galdes, A., Hill, H.A.O., Waley, S.G., and Abraham, E.P. (1980) J. Inorg. Biochem. 13, 189–204.PubMedCrossRefGoogle Scholar
  16. 16).
    Lipscomb, W.N., Hartsuck, J.A., Reeke, G.N., Quiocho, F.A., Bethge, P.H., Ludwig, M.L., Steitz, T.A., Muirhead, H., and Coppola, J.C. (1968) Brookhaven Symp. Biol. 21, 24–28.PubMedGoogle Scholar
  17. 17).
    Cramer, S.P., and Hodgson, K.O. (1979) Prog. Inorg. Chem. 25, 1–39.CrossRefGoogle Scholar
  18. 18).
    Powers, L. (1982) Biochim. Biophys. Acta 683, 1–38.PubMedGoogle Scholar
  19. 19).
    Bordas, J. (1982) in Uses of Synchrotron Radiation in Biology (Stuhrmann, H.B., ed.), Academic Press, London, pp. 107–143.Google Scholar
  20. 20).
    Stern, E.A. (1974) Phys. Rev. B. 10, 3027.CrossRefGoogle Scholar
  21. 21).
    Sayers, D.E., Stern, E.A., and Lytle, F.W. (1971) Phys. Rev. Lett. 27, 1204.CrossRefGoogle Scholar
  22. 22).
    Citrin, P.H., Eisenberger, P., and Kincaid, B.M. (1976) Phys. Rev. Lett. 36, 1346.CrossRefGoogle Scholar
  23. 23).
    Eisenberger, P., and Lengeier, B. (1980) Phys. Rev. B, 3551–3561.Google Scholar
  24. 24).
    Blackburn, N.J., Hasnain, S.S., Diakun, G.P., Knowles, P.F., Binsted, N., and Garner, C.D. (1983) Biochem. J. 213, 765–768.PubMedGoogle Scholar
  25. 25).
    Feiters, M.C., Little, C., Waley, S.G., and Jeffery, J. (1986) J. Phys., in the press.Google Scholar
  26. 26).
    Yachandria, V., Powers, L., and Spiro, T.G. (1983) J. Am. Chem. Soc. 105, 6596–6604.CrossRefGoogle Scholar
  27. 27).
    Mai kin, R., and Malmström, B.G. (1970) Adv. Enzymol. 33, 177–244.Google Scholar
  28. 28).
    Col man, P.M., Freeman, H.C., Guss, J.M., Murata, M., Norris, V.A., Ramshaw, J.A.M., and Venkatappa, M.P. (1978) Nature 272, 319–324.CrossRefGoogle Scholar
  29. 29).
    Gaykema, W.P.J., Hol, W.G.J., Vereijken, J.M., Soeter, N.M., Bäk, H.J., and Beintema, J.J. (1984) Nature 309, 23–29.CrossRefGoogle Scholar
  30. 30).
    Jeffery, J., Chesters, J., Mills, C., Sadler, PoJ., and Jörnvall, H. (1984) EMB0 Journal 3, 357–360.Google Scholar
  31. 31).
    Jörnvall, H., von Bahr-Lindström, H. and Jeffery, J. (1984) Eur. J. Biochem. 140, 17–23.PubMedCrossRefGoogle Scholar
  32. 32).
    Phillips, J.C., Bordas, J., Foote, A.M., Koch, M.H.J., and Moody, M.F. (1982) Biochemistry 21, 830–854.PubMedCrossRefGoogle Scholar
  33. 33).
    Abrahams, I.L., Bremner, I., Diakun, G.P., Garner, C.D., Hasnain, S.S., Ross, I., and Vasak, M., (1986) Biochem. J., 236, 585–589.PubMedGoogle Scholar
  34. 34).
    “Metallothionein” (Kagi, J.H.R. and Nordberg, M.) Birkhauser Verlag, Basel (1979) and references therein.Google Scholar
  35. 35).
    Hill, H.A.O., Sammes, P.G., and Waley, S.G. (1980) Phil. Trans. R. Soc. Lond. B 289, 333–344.CrossRefGoogle Scholar
  36. 36).
    Bicknel1, R., and Waley S.G. (1985) Bicohemistry 24, 6876–6887.CrossRefGoogle Scholar
  37. 37).
    Eklund, H., Horjales, E., Jörnvall, H., Bränden, C.-I., and Jeffery, J. (1985) Biochemistry 24, 8005–8012.PubMedCrossRefGoogle Scholar
  38. 38).
    Cremers, T.L., Bloomquist, D.R., Willett, R.D. and Crosby, G.A. (1980) Acta Cryst. B36, 3097–3099.CrossRefGoogle Scholar
  39. 39).
    Maret, W., Dietrich, H., Ruf, H.-H., and Zeppezauer, M. (1980) J. Inorg. Biochem. 12, 241–252.PubMedCrossRefGoogle Scholar
  40. 40).
    Tullius, T.D., Frank, P., and Hodgson, K.O. (1978) Proc. Natl. Acad. Sci. USA 75, 4069–4073.PubMedCrossRefGoogle Scholar
  41. 41).
    Scott, R.A., Hahn, J.E., Doniach, S., Freeman, H.C., and Hodgson, K.O. (1982) J. Am. Chem. Soc. 104, 5364–5369.CrossRefGoogle Scholar
  42. 42).
    Groeneveld, C.M., Feiters, M.C., Hasnain, S.S., van Rijn, J., Reedijk, J., and Canters, G.W. (1986) Biochim. Biophys. Acta, accepted for publication.Google Scholar
  43. 43).
    Peisach, J., Powers, L., Blumberg W.E., and Chance, B. (1982) Biophys. J. 38, 277–285.PubMedCrossRefGoogle Scholar
  44. 44).
    Hasnain, S.S., Warden, E.M., Garner, C.D., Schloesser, M., and Beyersmann, D. (1985) Biochem. J. 230, 625–633.PubMedGoogle Scholar
  45. 45).
    Batlle, A.M. del C., Ferramola, A.M. and Grinstein, M., (1967) Biochem. J. 104, 244–249.PubMedGoogle Scholar
  46. 46).
    Beyersmann, D., and Cox, M. (1984) Biochim. Biophys. Acta 788, 162–166.PubMedCrossRefGoogle Scholar
  47. 47).
    Cheh, A.M., and Neilands, J.B. (1976) Structure and Bonding 29, 123–169.CrossRefGoogle Scholar
  48. 48).
    Bevan, D.R., Bodlaender, P., and Shemin, D. (1980) J. Biol. Chem. 255, 2030–2035.PubMedGoogle Scholar
  49. 49).
    Brown, G.S., Navon, G., and Shulman, R.G. (1977) Proc. Natl. Acad. Sci. USA 74, 1794–1797PubMedCrossRefGoogle Scholar
  50. 50).
    Bergstén, P.-C., Waara, I., Lcivgren, S., Liljas, A., Kannan, K.K., and Bengtsson, U. (1972) in Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, Alfred Benzon Symp. IV, pp. 363–383, Academic Press, New York.Google Scholar
  51. 51).
    Bertini, I., Canti, G., Luchinat, C., and Scozzafava, A. (1978) J. Am. Chem. Soc. 100, 4873–4877.CrossRefGoogle Scholar
  52. 52).
    Kalb, A.J., Stern, E.A., and Heald, S.M. (1979) J. Mol. Biol. 135, 501–506.PubMedCrossRefGoogle Scholar
  53. 53).
    Bordas, J., Dodson, G.G., Grewe, H., Koch, M.H.J., Krebs, B., and Randall, J. (1983) Proc. R. Soc. Lond. B219, 21–39.CrossRefGoogle Scholar
  54. 54).
    Sellin, S., Eriksson, L.E.G., Aronsson, A.-C., and Mannervik, B. (1983) J. Biol. Chem. 258, 2091–2093.PubMedGoogle Scholar
  55. 55).
    Bicknel1, R., Hanson, G.R., Holmquist, B., and Little, C. (1986) Biochemistry, accepted for publication.Google Scholar
  56. 56).
    Garcia-Iniguez, L., Powers, L., Chance, B., Sellin, S., Mannervik, B., and Mildvan, A.S. (1984) Biochemistry 23, 685–689.PubMedCrossRefGoogle Scholar
  57. 57).
    Sellin, S., Eriksson, L.E.G., and Mannervik, B. (1982) Biochemistry, 21, 4850–4857.PubMedCrossRefGoogle Scholar
  58. 58).
    Little, C., and Otnaess, A.-B. (1975) Biochim. Biophys. Acta 391, 326–333.PubMedGoogle Scholar
  59. 59).
    Little, C. (1981) Acta Chem. Scand. B35, 39–44.CrossRefGoogle Scholar
  60. 60).
    Aakre, S.-E., and Little, C. (1982) Biochem. J. 203, 799–801.PubMedGoogle Scholar
  61. 61).
    Aalmo, K., Hansen, L., Hough, E., Jynge, K., Krane, J., Little, C., and Storm, C.B. (1984) Biochem. Int. 8, 27–33.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • C. David Garner
    • 1
    • 2
  • Martinus C. Feiters
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of ManchesterManchesterUK
  2. 2.Daresbury LaboratoryDaresbury, WarringtonUK

Personalised recommendations