Advertisement

Die Bedeutung des Endothels für die Gefäßregulation

  • E. Bassenge
  • G. Trogisch
Conference paper

Zusammenfassung

Während ursprünglich das Endothel in erster Linie als stoffwechselinaktive Barriere mit antithrombogenen Eigenschaften gesehen wurde, sind heute zwei Prinzipien bekannt, über die das Endothel aktiv an der Regulation des Gefäßtonus beteiligt ist:
  1. 1.

    Aktive Aufnahme und/oder Metabolisierung vasoaktiver Substanzen wie biogene Amine (Serotonin, Noradrenalin), Peptide (Angiotensin, Bradykinin) und Ade-ninnukleotide (über endotheliale Ektoenzyme);

     
  2. 2.

    Bildung und Freisetzung vasoaktiver Autakoide (Prostazyklin und andere Pro-staglandine, PAF = „platelet activating factor“ und EDRF = „endothelium- derived relaxant factor“) [1-3].

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376PubMedCrossRefGoogle Scholar
  2. 2.
    Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53: 557–573PubMedGoogle Scholar
  3. 3.
    Furchgott RF (1984) The role of endothelium in the responses of vascular smooth muscle to drugs. Ann Rev Pharmacol Toxicol 24: 175–197CrossRefGoogle Scholar
  4. 4.
    Busse R, Trogisch G, Bassenge E (1985) The role of endothelium in the control of vascular tone. Basic Res Cardiol 80: 475–490PubMedCrossRefGoogle Scholar
  5. 5.
    Bassenge E, Busse R, Biinning P, Lückhoff A (1985) Coronary vasodilation mediated by relaxing factors released from cultured endothelial cells. Eur Heart J 6(S1): 98Google Scholar
  6. 6.
    Schretzenmayr A (1933) Über kreislaufregulatorische Vorgänge an den großen Arterien bei der Muskelarbeit. Pflügers Arch Ges Phys 232: 743–748CrossRefGoogle Scholar
  7. 7.
    Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8: 37–44PubMedGoogle Scholar
  8. 8.
    Holtz J, Giesler M, Bassenge E (1983) Two dilatory mechanisms of antianginal drugs on epicardial coronary arteries in vivo: Indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 72 (Suppl 3): 98–106PubMedGoogle Scholar
  9. 9.
    Holtz J, Förstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium- mediated dilation of epicardial coronary arteries in conscious dogs: Effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6: 1161–1169PubMedGoogle Scholar
  10. 10.
    Bassenge E, Busse R, Holtz J, Pohl U (1984) The role of adrenergic nerves in the serotonin- induced coronary arteriolar dilation in canine myocardium in vivo. Int J Microcirc Clin Exp 3: 504Google Scholar
  11. 11.
    Shepherd JT, Vanhoutte PM (1985) Spasm of the coronary arteries: Causes and consequences (the scientist’s viewpoint). Mayo Clin Proc 60: 33–46PubMedGoogle Scholar
  12. 12.
    Cohen RA, Shepherd JT, Vanhoutte PM (1983) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221: 273–274PubMedCrossRefGoogle Scholar
  13. 13.
    Shimokawa H, Tomoike H, Nabeyama S et al. (1983) Coronary artery spasm induced in atherosclerotic miniature swine. Science 221: 560–561PubMedCrossRefGoogle Scholar
  14. 14.
    Owen MP, Bevan JA (1985) Acetylcholine induced endothelium-dependent vasodilation increases as artery diameter decreases in the rabbit ear. Experientia 4: 1057–1058CrossRefGoogle Scholar
  15. 15.
    Owen MP, Quinn C, Bevan JA (1985) Phentolamine-resistant neurogenic constriction occurs in small arteries at higher frequencies. Am J Physiol 249 : H404–414PubMedGoogle Scholar
  16. 16.
    Pohl U, Busse R, Bassenge E (1986) Endothelentfernung verstärkt die Wirkung von Natriumni- troprussid in peripheren Arterien: Endotheliale Beeinflussung der Nitratwirkung. Z Kardiol 75 (Suppl 1) :21Google Scholar
  17. 17.
    Förstermann U, Mülsch A, Böhme E, Busse R (1986) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res 58: 531–538PubMedGoogle Scholar
  18. 18.
    Holzmann S (1982) Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cycl Nucl Res 8: 409–419Google Scholar
  19. 19.
    Rapoport RM, Draznin MB, Murad F (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306: 174–176PubMedCrossRefGoogle Scholar
  20. 20.
    Rapoport RM, Murad F (1983) Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: Role of cyclic GMP. J Cycl Nucl Res 9: 281–296Google Scholar
  21. 21.
    Busse R, Pohl U, Lückhoff A, Bassenge E (1985) Evidence for abluminal release of endothelium derived relaxant factor. Circulation 72(Suppl III): 81Google Scholar
  22. 22.
    Pohl U, Simon B, Dezsi L, Busse R (1986) Endothelium-mediated dilation in the terminal vascular bed in vivo is suppressed by gossypol. Pflügers Arch 406 (Suppl): R46Google Scholar
  23. 23.
    Larose P, Meloche S, DuSouich P, Delean A, Ong H (1985) Radioimmunoassay of atrial natriuretic factor: human plasma levels. Biochem Biophys Res Commun 130: 553–558PubMedCrossRefGoogle Scholar
  24. 24.
    Tikkanen I, Syrquist F, Metsärinne K, Leidenius R (1985) Plasma atrial natriuretic peptide in cardiac disease and during infusion in healthy volunteers. The Lancet II: 66–69CrossRefGoogle Scholar
  25. 25.
    Sugawara A, Nakao K, Morii N et al. (1985) Alpha-human atrial natriuretic polypeptide is released from the heart and circulates in the body. Biochem Biophys Res Commun 129: 439–446PubMedCrossRefGoogle Scholar
  26. 26.
    Stewart D, Eisner D, Holtz J, Bassenge E (1986) Wirkung von atrial natriuretic factor (ANF) auf Venentonus und peripheren Widerstand im Vergleich zu Glyzerintrinitrat (GTN). Z Kardiol 75 (Suppl 1)Google Scholar
  27. 27.
    Winquist RJ, Faison EP, Waldman SA, Schwartz K, Murad F, Rapoport RM (1984) Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci USA 81: 7661–7664PubMedCrossRefGoogle Scholar
  28. 28.
    Ohlstein EH, Berkowitz BA (1985) Cyclic guanosine monophosphate mediates vascular relaxation induced by atrial natriuretic factor. Hypertension 7: 306–310PubMedGoogle Scholar
  29. 29.
    Scivoletto R, Carvalho MHC (1984) Cardionatrin causes vasodilation in vitro which is not dependent on the presence of endothelial cells. Eur J Pharmacol 101: 143–145PubMedCrossRefGoogle Scholar
  30. 30.
    Hirata Y, Tomita M, Yoshimi H, Ikeda M (1984) Specific receptors for atrial natriuretic factor (ANF) in cultured vascular smooth muscle cells of rat aorta. Biochem Biophys Res Commun 125: 562–568PubMedCrossRefGoogle Scholar
  31. 31.
    Hirata Y, Tomita M, Takada S, Yoshimi H (1985) Vascular receptor binding activities and cyclic GMP responses by synthetic human and rat atrial natriuretic peptides (ANP) and receptor down- regulation by ANP. Biochem Biophys Res Commun 128: 538–546PubMedCrossRefGoogle Scholar
  32. 32.
    Tremblay J, Gerzer R, Vinay P, Pang SC, Beliveau R, Hamet P (1985) The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett 181: 17–22PubMedCrossRefGoogle Scholar
  33. 33.
    Anand-Srivastava MB, Franks DJ, Cantin M, Genest J (1984) Atrial natriuretic factor inhibits adenylate cyclase activity. Biochem Biophys Res Commun 121: 855–862PubMedCrossRefGoogle Scholar
  34. 34.
    Anand-Srivastava MB, Johnson RA, Picard S, Cantin M (1985) Ninhibin: A sperm factor attenuates the atrial natriuretic factor mediated inhibition of adenylate cyclase: Possible involvement of inhibitory guanine nucleotide regulatory protein. Biochem Biophys Res Commun 129: 171–178PubMedCrossRefGoogle Scholar
  35. 35.
    Leitman DC, Murad F (1986) Comparison of binding and cyclic GMP accumulation by atrial natriuretic peptides in endothelial cells. Biochim Biophys Acta 885: 74–79PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • E. Bassenge
    • 1
  • G. Trogisch
  1. 1.Institut für angewandte Physiologie und Balneologie der UniversitätFreiburg i. Br.Germany

Personalised recommendations