Atmospheric Lead Deposition into Guarapina Lagoon, Rio de Janeiro State, Brazil

  • S. R. Patchineelam
  • C. M. Leitão Filho
  • K. Kristotakis
  • H. J. Tobschall


The rate of anthropogenic mobilization of heavy metals is higher than the natural supply to the sedimentary environments. I n rivers, lakes and various other terrestrial areas, the drastic increase of heavy metals has been accredited to human activity (Tyler 1972). Erlenkeuser et al. (1974) suggest that Cd, Pb, Zn and Cu in the upper sediment sequence of sediment cores collected from Kiel Bight in the Baltic Sea, are the result of fossil fuel use in industries. Such assemblages have been identified in North America by Goldberg et al. (1977, 1979) from both coastal regions. Sediment cores taken from the deepest part of lakes and lagoons have been analysed to study the historical development of environmental contamination (Förstner and Müller 1974; Molnar et al. 1978; Nriagu et al. 1979). Norton et al. (1981) determined heavy metals in high altitude lakes on the east coast of the United States and attributed Zn and Pb accumulations in the sediment cores to the atmospheric precipitation. Deposition in lakes, away from any industrial activity, has been attributed to transportation by winds over long distances (Davis and Galloway 1981). The present study deals with the distribution of heavy metals in cores of various sedimentary environments of Guarapina lagoon.


Sediment Core Tidal Channel Core Site Detrital Mineral High Altitude Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bidone E (1986) Estudos integrados do sistema de drenagem das bacias das lagoas de Maricée Guarapina. Projeto FINEP, UFF, Niterôi, (unpublished )Google Scholar
  2. Biscaye PE (1964) Mineralogy and sedimentation of the deep sea sediment fine fraction in the Atlantic Ocean and adjacent seas and oceans. Yale University, Geochem Tech Rep 8: 86Google Scholar
  3. Coe R, Froidefond, JM, Turcq B (to be published) Geomorphologie eôtière et chronologie relative des dépôts sedimentaires recentes: L’exemple du Littoral situé a l’est de Rio de Janeiro (Brasil). Bull Inst Geol Bassin AquitaineGoogle Scholar
  4. Bruland KW, Bertine K, Koida M, Goldberg ED (1974) History of metal pollution in Southern California coastal zone. Environ Sei Technol 8: 425–432CrossRefGoogle Scholar
  5. Buat M (1979) Influence de la retombeé atmosphérique sur la chimie des métaux en trace duns la matière en suspension de l’Atlantique Nord. Thèse Doctoral d’Etat Paris VII, p 434Google Scholar
  6. Carruesco C, La Paquellerie Y (1985) Heavy metal pollution in the Arcachon Basin (France): Bonding states. Mar Pollut Bull 16: 493–497CrossRefGoogle Scholar
  7. Davis AO, Galloway JN (1981) Atmospheric lead and zinc deposition into lakes of the Eastern United States. In: Eisenreich SJ (ed) Atmospheric pollutants in natural waters. Ann Arbor Sei Publ. 6: 401–408Google Scholar
  8. Duinker JC, Wollast R, Billen G (1979) Behaviour of manganese in the Rhine and Scheldt estuaries: Geochemical cycling. Estuar coast mar Sei 9: 727–738CrossRefGoogle Scholar
  9. Erlenkeuser H, Suess E, Willkomm H (1974) Industrialization affects heavy metal and carbon isotope concentration in recent Baltic Sea sediments. Geochim cosmochim Acta 38: 823–842CrossRefGoogle Scholar
  10. Förstner U, Müller G (1974) Schwermetallanreicherungen in datierten Sedimentkernen aus dem Bodensee und aus dem Tegernsee. Tschermaks Min Petr Mitt 21: 145–163CrossRefGoogle Scholar
  11. Goldberg ED, Gamble E, Griffin JJ, Koide M (1977) Pollution history of Narra-gansett Bay as recorded in its sediments. Estuar coast mar Sei 5: 549–561CrossRefGoogle Scholar
  12. Goldberg ED, Griffin JJ, Hodge V, Koide M, Windom H (1979) Pollution history of the Savannah river estuary. Environ Sei Technol 13: 588–593CrossRefGoogle Scholar
  13. Hamm A (1971) Limnologisehe Untersuchungen am Tegernsee und Schliersee nach der Abwasserfernhaltung (Stand 1970), Z Wasser Abwasserforschung 5: 131–150Google Scholar
  14. Molnar FM, Rothe P, Förstner U, Stern J, Ogorelec B, Sercelj A, CulibergM (1978) Lakes Bled and Bohinj: Origin, composition and pollution of recent sediments. Geologija Ljublijama 21: 93–164Google Scholar
  15. Norton SA, Hess CT, Davis RB (1981) Rates of accumulation of heavy metals in pre-and post-European sediments in New England lakes. In: Eisenreich SJ (ed) Atmospheric pollutants in natural waters. Ann Arbor Sei Publ 6: 409–421Google Scholar
  16. Nriagu JO, Kemp ALM, Wong HK, Harper N (1979) Sedimentary record of heavy metal pollution in Lake Erie. Geochim cosmochim Acta 43: 247–258CrossRefGoogle Scholar
  17. Patchineelam SR (1986) Estudos do sistema de drenagem das bacias das lagoas de Maricae Guarapina. Projeto FINEP, UFF, Niter6i, (unpublished)Google Scholar
  18. Patchineelam SR, Leitao Filho CC (to be published) Estudos preliminares sobre a composipao mineralogica, carbono organico, e nitrogenio nos testemunhos de sedimento da lagoa de Guarapina, RJ. Acta limnGoogle Scholar
  19. Bras Pierrard JM (1969) Photochemical decomposition of lead halidesfrom automobile exhaust. Environ Sci Technol 3: 48CrossRefGoogle Scholar
  20. Salomons W, Forstner U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New York, p 349Google Scholar
  21. Thomas RL (1972) The distribution of mercury in the sediment of Lake Ontario. Can J Earth Sci 9: 636–651CrossRefGoogle Scholar
  22. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Bull geol Soc Am 72: 175–192CrossRefGoogle Scholar
  23. Tyler G (1972) Heavy metal polluted nature may reduce productivity. Ambio 1: 52–59Google Scholar
  24. Wagner G (1972) Stratifikation der Sedimente und Sedimentationsrate im Bodensee. Verh int Verein theor angew Limnol 18: 475–481Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • S. R. Patchineelam
    • 1
  • C. M. Leitão Filho
    • 1
  • K. Kristotakis
    • 2
  • H. J. Tobschall
    • 2
  1. 1.Departamento de Geoquimica, Instituto de QuimicaUniversidade Federal FluminenseNiteroiBrazil
  2. 2.Institut für GeowissenschaftenJohannes Gutenberg UniversitätMainzFederal Republic of Germany

Personalised recommendations