Conformational Differences Between Oxy- and Deoxy-Hemocyanin

  • L. Zolla
  • P. Thyberg
  • R. Rigler
  • M. Brunori
Conference paper


As in the case of hemoglobin (1)the classic two-state allosteric model (2),based on the presence of two functionally relevant quaternary states of the macromolecule in chemical equilibrium, is often adequate to describe cooperative effects in the binding of O2 by hemocyanin (3,4). Nevertheless direct physical evidence for the presence of different conformational states of hemocyanin in equilibrium is (at best) very limited, with the possible exception of some observations(5,6). Recent spectroscopic studies have shown that upon binding of O2 at the active site of hemocyanin the Cu-Cu distance and the number of ligands (7) bound to the metal atoms change, with a strong involvement of the endogeneous protein bridge. This probably triggers the quaternary conformational change(s) involved in the cooperative binding of 02. In order to aquire direct experimental information on the ligand linked conformational transition of hemocyanins we have applied autocorrelation spectroscopy to probe the internal mobility and the hydrodynamic properties of oxy and deoxy Helix p. β -hemocyanin (M.14.9 millions).


Cooperative Binding Internal Mobility Rotational Mobility Translational Diffusion Coefficient Anisotropy Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Perutz M.F., Nature 228, 726 (1970).PubMedCrossRefGoogle Scholar
  2. 2).
    Monod J., Wyman J. and Changeaux J.P., J. Mol. Biol. 2, 88 (1965).CrossRefGoogle Scholar
  3. 3).
    Zolla L., Kuiper H.A., Vecchini P., Antonini E. and Brunori M., Eur. J. Biochem. 87, 467 (1978).PubMedCrossRefGoogle Scholar
  4. 4).
    Brower M., Bonaventura C. and Bonaventura J., Biochemistry 16, 3897 (1977).CrossRefGoogle Scholar
  5. 5).
    van Driel and van Bruggen E.F.J. Biochemistry 19, 730 (1975).CrossRefGoogle Scholar
  6. 6).
    van Breenen J.F.L., Ploegnen J.H. and van Bruggen E.F. J. Eur. J. Biochem. 100, 61 (1979).CrossRefGoogle Scholar
  7. 7).
    Woolery G.L., Powers L., Winkler M., Solomon E.I. and Spiro T.G., J. Am. Chem. Soc. 106, 86 (1984).CrossRefGoogle Scholar
  8. 8).
    Rigler R., Claesens F., Lomakka G.: In “Ultrafast Phenomena IV”, Eds. D.H. Auston, K.B. Eisenthal, Springer Series in Chemical Physics 38, 472 (1984).Google Scholar
  9. 9).
    Ma J.K.H., Luzzi L.A., Ma J.Y.C., Li N.C. J. Pharm.Sci, 66, 1684 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • L. Zolla
    • 1
  • P. Thyberg
    • 2
  • R. Rigler
    • 2
  • M. Brunori
    • 1
  1. 1.CNR Centre of Molecular Biology, Institute of Chemistry, Faculty of MedicineUniversity of Rome “La Sapienza”RomeItaly
  2. 2.Department of Medical BiophysicsKarolinska InstituteStockholmSweden

Personalised recommendations