Skip to main content
  • 165 Accesses

Abstract

The rapidity of sperm ascent to the oviducts in domestic species, where the distances covered are large, and the velocity of sperm determined in-vitro is known to be too low to account for the time taken for the ascent, sustains the belief that the female tract promotes bulk transfer of sperm cells. Movements of the female tract do occur, but whether these alone are sufficient for sperm to reach the egg is still debated (see Blandau, 1969; Hunter et al., 1983). Many experiments have been poorly designed (see Overstreet and Katz, 1977); e.g. the appearance of spermatozoa in the oviducts after insemination of immotile cells is poor evidence for their passive transport, especially where motility could be reinitiated in the female tract (e.g. Howe and Black, 1963). Conversely, where immotile spermatozoa fail to pass the cervix (Noyes et al., 1958; Baker and Degen, 1972), the treatments rendering the cells immotile (temperature shock or detergents) were not considered. The damage may have altered their surfaces and their susceptibility to removal by invading leucocytes (Bedford, 1965). In addition to the use of damaged sperm to assess normal sperm transport, most studies have involved recovery of sperm post-mortem, with all the complications arising from relaxation of normally constricting muscle tone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Haila A and Fain-Maurel MA (1983) Enzyme activities in Cynomolgus monkey and mouse spermatozoa evaluated histochcmically during epididymal maturation. Arch Androl 11: 101–113

    Article  PubMed  CAS  Google Scholar 

  • Acott TS and Hoskins DD (1978) Bovine forward motility protein. Partial purification and characterization. J Biol Chem 253: 6744–6750

    PubMed  CAS  Google Scholar 

  • Acott TS and Hoskins DD (1981) Bovine sperm forward motility protein: binding to epididymal spermatozoa. Biol Reprod 24: 234–240

    Article  PubMed  CAS  Google Scholar 

  • Acott TS and Hoskins DD (1983) Cinematographic analysis of bovine epididymal sperm motility: epididymal maturation and forward motility protein. J Submicroscop Cytol 15: 77–82

    CAS  Google Scholar 

  • Acott TS, Johnson DJ, Brandt H and Hoskins DD (1979) Sperm forward motility protein: tissue distribution and species cross reactivity. Biol Reprod 20: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Acott TS, Katz DF and Hoskins DD (1983) Movement characteristics of bovine epididymal spermatozoa. Effects of forward motility protein and epididymal maturation. Biol Reprod 29: 389–399

    Google Scholar 

  • Adam DE and Wei J (1975) Mass transport of ATP within the motile sperm. J Theoret Biol 49: 125–145

    Article  CAS  Google Scholar 

  • Afzelius BA, Eliasson R, Johnson O and Undholmer C (1975) Lack of dynein arms in immotile human spermatozoa. J Cell Biol 66: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JG and Storey BT (1983a) Taurine, hypotaurinc, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod 29: 548–555

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JG and Storey BT (1983b) Role of superoxide dismutase in protecting rabbit spermatozoa from O2, toxicity due to lipid peroxidation. Biol Reprod 28: 1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JG and Storey BT (1984) Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa. Biol Reprod 30: 323–331

    Article  PubMed  CAS  Google Scholar 

  • Amann RP and Grid LC (1974) Fertility of bov ine spermatozoa from rete testis. Cauda epididymis and ejaculated semen. J Dairy Sci 57: 212–219

    Article  PubMed  CAS  Google Scholar 

  • Amann RP, Hay SR and Hammerstedt RH (1982) Yield, characteristics, motility and cAMP content of sperm isolated from seven regions of ram epididymis. Biol Reprod 27: 723–733

    Article  PubMed  CAS  Google Scholar 

  • Amelar RD, Dubin L and Schoenfeld C (1980) Sperm Motility. Fert Steril 34: 197–215

    CAS  Google Scholar 

  • Atherton RW, Khatoon S, Schoff PK and Hadley BE (1985) A study of rat epididymal sperm adenosine 3′,5′-monophosphate-dependent protein kinase: maturation differences and cellular location. Biol Reprod 32: 155–171

    Article  PubMed  CAS  Google Scholar 

  • Atmar VJ, Kuehn GD and Casillas FR (1981) A polyamine-depcndent protein kinase from bovine epididymal spermatozoa. J Biol Chem 256: 8275–8278

    PubMed  CAS  Google Scholar 

  • Babcock DF (1983) Examination of the intracellular ionic environment and of ionophorc action by nullpoint measurements employing the fluorescent chromophore. J Biol Chem 258: 6380–6389

    PubMed  CAS  Google Scholar 

  • Babcock DF and Lardy HA (1982) Alterations in membrane permeability to Ca2+ and their consequences during maturation of mammalian spermatozoa. In: Membranes and Transport, Vol 1. Ed. AN Martonisi, Plenum Press. London, pp 671–676

    Google Scholar 

  • Babcock DF, First NL and Lardy HA (1976) Action of ionophorc A23187 at the cellular level. Separation of effects at the plasma and mitochondrial membranes. J Biol Chem 251: 3881–3886

    PubMed  CAS  Google Scholar 

  • Babcock DF, Stamerjohn DS and Hutchison T (1978) Calcium redistribution in individual cells correlated with ionophore activity on motility. J exp Zool 204: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Babcock DF, Singh JP and Lardy HA (1981) Changes in internal calcium concentrations modulate mammalian sperm motility without mediation of cyclic AMP. In: Calcium-binding proteins: Structure and Function. Eds. FL Siegel, E Carafoli, RH Kretsinger, DH MacLennon and RH Wasserman. Elsevier North Holland, pp 479–481

    Google Scholar 

  • Baccetti B, Burrini AG, Maver A, Pallini V and Renieri T (1979) “9 + 0” immotile spermatozoa in an infertile man. Andrologia 11:437–443

    Article  PubMed  CAS  Google Scholar 

  • Baker RD and Degen AA (1972) Transport of live and dead boar spermatozoa within the reproductive tract of gilts. J Reprod Fert 28: 369–377

    Article  CAS  Google Scholar 

  • Bavister BD (1979) Elimination of the adverse effect of dilution on hamster sperm motility in vitro. In: The Spermatozoon. Eds. DW Fawcett and JM Bedford. Urban and Schwarzenberg, Baltimore, pp 169–172

    Google Scholar 

  • Bavister BD and Yanaginiachi R (1977) The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol Reprod 16: 228–237

    Article  PubMed  CAS  Google Scholar 

  • Bavister BD, Rogers BJ and Yanagimachi R (1978) The effects of cauda epididymal plasma on the motility and acrosome reaction of hamster and guinea pig spermatozoa in vitro. Biol Reprod 19: 358–363

    Article  PubMed  CAS  Google Scholar 

  • Bavistcr BD, Chen AF and Fu PC (1979) Catecholamine requirement for hamster sperm motility in vitro. J Reprod Fert 56: 507–513

    Article  Google Scholar 

  • Bedford JM (1965) Effect of environment on phagocytosis of rabbit spermatozoa. J Reprod Fert 9: 249–256

    Article  CAS  Google Scholar 

  • Bedford JM (1967) Effects of duct ligation on the fertilizing ability of spermatozoa from different regions of the rabbit epididymis. J exp Zool 166: 271–282

    Article  PubMed  CAS  Google Scholar 

  • Bedford JM (1975) Maturation, transport, and fate of spermatozoa in the epididymis. In: Handbook of Physiology, Section VII Endocrinology, Volume V, Male reproductive system. Eds. RO Creep and DW Hamilton. American Physiol Soc, Washington DC. pp 303–317

    Google Scholar 

  • Bedford JM and Calvin HI (1974) Changes in the -S-S-linked structures of the sperm tail during epididymal maturation with comparative observations in submammalian species. J exp Zool 187: 181–204

    Article  PubMed  CAS  Google Scholar 

  • Bedford JM, Calvin H and Cooper GW (1973) The maturation of spermatozoa in the human epididymis. J Reprod Fert Suppl 18: 199–213

    CAS  Google Scholar 

  • Bishop DW and Hoffmann-Berling H (1959) Extracted mammalian sperm models. I. Preparation and reactivation with adenosine triphosphate. J Cell Comp Physiol 53: 445–466

    Article  PubMed  CAS  Google Scholar 

  • Bishop MR, Ramasastry BV, Schmidt DE and Harbison RD (1976) Occurrence of choline acctyltransferase and acetylcholine and other quaternary ammonium compounds in mammalian spermatozoa. Biochem Pharmacol 25: 1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Bishop MR, Ramasastry BV and Stavinoha WB (1977) Identification of acetylcholine and propionylcholine in bull spermatozoa by integrated pyrolysis. gas chromatography and mass spectrometry. Biochem Biophys Acta 500: 440–444

    Article  PubMed  CAS  Google Scholar 

  • Blandau RJ (1945) On the factors involved in sperm transport through the cervix uteri of the albino rat. Am J Anat 77: 253–272

    Article  Google Scholar 

  • Blandau RJ (1969) Gamete transport - Comparative Aspects. In: The Mammalian Oviduct. Composition. Biology and Methodology. Eds. ESE Hafez and RJ Blandau. University of Chicago Press, Chicago, pp 129–162

    Google Scholar 

  • Blandau RJ and Rumery RE (1964) The relationship of swimming movements of epididymal spermatozoa to their fertilizing capacity. Fert Steril 15: 571–579

    CAS  Google Scholar 

  • Blandau RJ and Young WC (1939) The effects of delayed fertilization on the development of the guinea pig ovum. Am J Anat 64: 303–329

    Article  Google Scholar 

  • Bouchard P, Gagnon C, Phillips DM and Bardin CW (1980) The localization of protein carboxymethylase in sperm tails. J Cell Biol 86: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Bouchard P, Penningroth SM, Cheung A, Gagnon C and Bardin CW (1981) Erythro-9-(3-)2-hydroxynonyl))adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxymethylase activities. Proc Nat Acad Sci US 78: 1033–1036

    Article  CAS  Google Scholar 

  • Bracken BG, Hall JL and Oh YK (1978) In-vitro fertilizing ability of testicular, epididymal. And ejaculated rabbit spermatozoa. Fert Steril 29: 571–582

    Google Scholar 

  • Bradley MP and Forrester IT (1980a) A sodium-calcium exchange mechanism in plasma membrane vesicles isolated from ram sperm flagella. FEBS Letts 121: 15–18

    Article  CAS  Google Scholar 

  • Bradley MP and Forrester IT (1980b) The inhibition of sperm motility and flagellar plasma membrane (Ca2+ + Mg2+) ATPase activity by quercetin. Proc U Otago Med Sch 58: 69–70

    CAS  Google Scholar 

  • Bradley MP and Forrester IT (1981) Stimulation of ram caudal sperm motility by a seminal plasma factor calscmin. Proc U Otago Med Sch 59: 6–8

    CAS  Google Scholar 

  • Bradley, MP and Forrester IT (1985) Sperm calcium homeostasis during maturation. In: Male Fertility and its Regulation. Eds TJ Lobl and ESE Hafez, MTP Press, Lancaster, pp 437–449

    Chapter  Google Scholar 

  • Brandt H and Hoskins DD (1980) A cAMP-dependent phosphorylated motility protein in bovine epididymal sperm. J Biol Chem 255: 982–987

    PubMed  CAS  Google Scholar 

  • Brandt H, Acott TS, Johnson DJ and Hoskins DD (1978) Evidence for an epididymal origin of bovine sperm forward motility protein. Biol Reprod 19: 830–835

    Article  PubMed  CAS  Google Scholar 

  • Breitbart H, Rubinstein S and Nass-Arden L (1985) The role of Ca2+ and Ca2+-ATPase in maintaining motility in ram spermatozoa. J Biol Chem 260: 11548–11553

    PubMed  CAS  Google Scholar 

  • Brooks JC and Siegel FL (1973) Calcium-binding phosphoprotcin: the principal acidic protein of mammalian sperm. Biochem Biophys Res Commun 55: 710–716

    Article  PubMed  CAS  Google Scholar 

  • Burgos MH and Tovar FS (1974) Sperm motility in the rat epididymis. Fert Steril 25: 985–991

    CAS  Google Scholar 

  • Calvin HI and Bedford JM (1971) Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fert Suppl 13: 65–75

    Google Scholar 

  • Calvin HI and Bleau G (1974) Zinc-thiol complexes in keratinoid structures of rat spermatozoa. Exp Cell Res 86: 280–285

    Article  PubMed  CAS  Google Scholar 

  • Calvin HI, Yu CC and Bedford JM (1973) Effects of epididymal maturation, zinc (II) and copper ( II) on the reactive sulphydryl content of structural elements in rat spermatozoa. Exp Cell Res 81: 333–341

    Article  PubMed  CAS  Google Scholar 

  • Carter AL, Stratman FW, Hutson SM and Lardy HA (1980) The role of carnitine and its esters in sperm metabolism. In: Carnitine Biosynthesis, Metabolism and Functions. Eds RA Frenkel and JD McGarry. Acad Press. New York, pp 251–264

    Google Scholar 

  • Cascieri M, Amann RP and Hammerstedt RH (1976) Adenine nucleotide changes at initiation of bull sperm motility. J Biol Chem 251: 787–793

    PubMed  CAS  Google Scholar 

  • Casillas ER (1973) Accumulation of carnitine by bovine spermatozoa during maturation in the epididymis. J Biol Chem 248: 8227–8232

    PubMed  CAS  Google Scholar 

  • Casillas ER, Elder CM and Hoskins DD (1980) Adenylate cyclase activity of bovine spermatozoa during maturation in the epididymis and the activation of sperm particulate adenylate cyclase by GTP and polyamines. J Reprod Fert 59: 297–302

    Article  CAS  Google Scholar 

  • Castaneda E, Bouchard P, Saling P, Phillips D, Gagnon C and Bardin CW (1983) Endogenous protein carboxyl methylation in hamster spermatozoa: changes associated with capacitation in vitro. Int J Androl 6: 482–496

    Article  PubMed  CAS  Google Scholar 

  • Chaix P, Morin GA and Jezequel J (1950) Sur la participation des phosphates aux reactions d’oxydation de 1’adrenaline. Biochem Biophys Acta 5: 472–476

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty J and Nelson L (1974) Organization and redistribution of adenosine-triphosphatase during spermiogenesis in the mouse. Biol Reprod 10: 85–97

    Article  PubMed  CAS  Google Scholar 

  • Chapvil M (1973) New aspccts in the biological role of zinc: a stabilizer of macromolcculcs and biological membranes. Life Sci 13: 1041–1049

    Article  Google Scholar 

  • Chenoweth MB (1956) Chelation as a mechanism of pharmacological action. Pharm Rev 8: 57–87

    PubMed  CAS  Google Scholar 

  • Chulavatnatol M and Treetipsatit N (1983) Initiation of sperm flagellar movement using rat demembranated sperm model: nucleotide specificities. In: The Sperm Cell. Ed. J Andre. Martinus-NijhofT, London, pp 364–367

    Chapter  Google Scholar 

  • Chulavatnatol M and Yindepit S (1976) Changes in surface ATPase of rat spermatozoa in transit from the caput to the Cauda epididymidis. J Reprod Fert 48: 91–97

    Article  CAS  Google Scholar 

  • Chulavatnatol M, Hasibuan I, Yindepit S and Eksiittikul T (1977) Lack of effect of a-chlorohydrin on the ATP content of rat, mouse and human spermatozoa. J Reprod Fert 50: 137–139

    Article  CAS  Google Scholar 

  • Chulavatnatol M, Eksittikul T and Toowicharanont P (1978) Control of epididymal sperm motility; an approach to male fertility regulation. Int J Androl Suppl 2: 629–638

    Article  CAS  Google Scholar 

  • Chulavatnatol M, Panyin S and Wittisuwannakul D (1982) Comparison of phosphorylatcd proteins in intact rat spermatozoa from caput and cauda epididvmidis. Biol Reprod 26: 197–207

    Article  PubMed  CAS  Google Scholar 

  • Clarke GN and Yanagimachi R (1978) Actin in mammalian sperm heads. J exp Zool 205: 125–132

    Article  PubMed  CAS  Google Scholar 

  • Clarke GN, Clarke FM and Wilson S (1982) Actin in human spermatozoa. Biol Reprod 6: 319–327

    Article  Google Scholar 

  • Cooper GW, Overstreet JW and Katz DF (1979) The motility of rabbit spermatozoa recovered from the female reproductive tract. Gamete Research 2: 35–42

    Article  Google Scholar 

  • Cooper TG (1985) Prevention of hypo-osmotic swelling by detergents provides clues to the membrane structure of rat sperm. Int J Androl 8: 159–167

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG and Orgebin-Crist MC (1975) The effect of epididymal and testicular fluids on the fertilising capacity of testicular and epididymal spermatozoa. Andrologia 7: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG and Orgebin-Crist MC (1977) Effect of aging on the fertilizing capacity of testicular spermatozoa from the rabbit. Biol Reprod 16: 258–266

    Article  PubMed  CAS  Google Scholar 

  • Cornett E and Meizel S (1980) 9-AAP, a fluorescent ß-adrenergic antagonist, enters the hamster sperm acrosome in a manner inconsistent with binding to ß-adrenergic receptors. J Histo Cyto 28:462 464

    Google Scholar 

  • Crabo BG and Hunter AG (1975) Sperm maturation and epididymal function. In: Control of Male Fertility. Eds. JJ Sciarra, C Markland and JJ Speidel, Harper Row. Hagerstown. pp 2–23

    Google Scholar 

  • Cummins JM (1976) Effects of epididymal occlusion on sperm maturation in the hamster. J exp Zool 197: 187–190

    Article  Google Scholar 

  • Dacheux JL and Paquignon M (1980a) Effects of caffeine on ram and boar spermatozoa; influence of ihcir stage of maturation and the medium; initiation of progressive motility of testicular spermatozoa. In: Testicular Development, Structure, and Function. Eds. A Steinberger and E Steinberger, Raven Press. New York, pp 513–522

    Google Scholar 

  • Dacheux JL and Paquignon M (1980b) Relations between the fertilizing ability, motility and metabolism of epididymal spermatozoa. Reprod Nutr Develop 20: 1085–1099

    Article  CAS  Google Scholar 

  • Dacheux JL and Paquignon M (1983) Influence ofinitiation of forward motility on the fertilizing ability of immature boar spermatozoa in in vivo homologous and in vitro heterologous systems of insemination In: The Sperm Cell. Ed. J Andre. Martinus-Nijhoff. The Hague, pp 99–102

    Chapter  Google Scholar 

  • Dawson MI, Goerver RTN and Tail A (1979) The effect of N-(methoxy polyethylene glycol)p-hydroxymercuribenzamide, a polymeric sulphydyl group reagent, on spermatozoan motility. Contraception 20: 159–165

    Article  PubMed  CAS  Google Scholar 

  • del Rio AG and Raisman R (1978) cAMP in spermatozoa taken from different segments of the rat epididymis. Experientia 34:670–671

    Google Scholar 

  • Djøseland O, Gordeladze JO, Høglo C, Halse JI and Haugen HN (1980) Evidence for androgen-dependem phosphodiestcrassc activity in rat seminal vesicle and epididymis. Int J Androl 3: 363–366

    Article  PubMed  Google Scholar 

  • Drevius LO (1975) Permeability of the bull-sperm membrane. In: The Functional Anatomy of the Spermatozoon. Ed. BA Afzelius. Pergamon Press. Oxford, pp. 373–383

    Google Scholar 

  • Egbunike GN (1980) Changes in the acetylcholinesterase activity of mammalian spermatozoa during maturation. Int J Androl 3: 459–468

    Article  PubMed  CAS  Google Scholar 

  • Egbunike GN (1982) Effect of chloroquine on the motility and acetylcholinesterase activity of porcine spermatozoa during epididymal maturation. Andrologia 14: 503–508

    Article  PubMed  CAS  Google Scholar 

  • Egbunike GN, Branscheid W, Pfisterer J and Holtz W (1986) Changes in porcine sperm lactate dehydrogenase isoenzymes during sperm matruation. Andrologia 18: 108–113

    Article  PubMed  CAS  Google Scholar 

  • Elfvin LG (1968) An ultrastructural difference between the outer and inner membrane of the middle piece mitochondria in rat spermatozoa. J Ultrastruct Res 24: 259–268

    Article  PubMed  CAS  Google Scholar 

  • Feinberg J, Weinman J, Weinman S, Walsh MP, Harricane MC, Gabaion J and Demaille JC. (1981) Immunocytochcmical and biochemical evidence for the presence of calmodulin in bull sperm flageltum. Isolation and characterization of sperm calmodulin. Biochem Biophys Acta 673: 303–311

    Article  PubMed  CAS  Google Scholar 

  • Fentic IH and Lindemann CB (1978) Simultaneous comparisons of motility and ATPase activity in Triton X-100 extracted rat sperm. J Cell Biol 79: 290a (abstr)

    Google Scholar 

  • Fisher-Fischbein J, Gagnon C and Bardin CW (1985) The relationship between glycolysis, mitochondrial respiration, protein-carboxylmethylation and motility in hamster epididymal spermatozoa. Int J Androl 8: 403–416

    Article  PubMed  CAS  Google Scholar 

  • Florman HM and Storey BT (1981) Inhibition of in vitro fertilization of mouse eggs: 3-quinuclidinyl benzilate specifically blocks penetration of zonae pellucidae by mouse spermatozoa. J exp Zool 216: 159–167

    Article  PubMed  CAS  Google Scholar 

  • Florman HM and Storey BT (1982) Characterization of cholinomimetic agents that inhibit in vitro fertilization in the mouse. Evidence for a sperm-specific binding site. J Androl 3: 157–164

    CAS  Google Scholar 

  • Ford WCL (1981) The oxidation of glycerol 3-phosphate by testicular and epididymal spermatozoa. Comp Biochem Physiol 68B: 289–293

    Google Scholar 

  • Ford WCL (1982) The mode of action of 6-chloro-6-dcoxy sugars as antifertility agents in the male. In: Progress Towards a Male contraccptivc. Eds. SL Jeffcoate and M Sandler, John Wiley and Sons Ltd., Chichester, pp 159–184

    Google Scholar 

  • Ford WCL and Harrison A (1983) The activity of glyceraldehyde 3-phosphate dehydrogenase in spermatozoa from different regions of the epididymis in laboratory rodents treated with a-chlorohydrin or 6-chloro-deoxyglucosc. J Reprod Fert 69: 147–156

    Article  CAS  Google Scholar 

  • Fray CS, Hoffer AP and Fawcett DW (1972) A reexamination of motility patterns of rat epididymal spermatozoa. Anat Rec 173: 301–308

    Article  PubMed  CAS  Google Scholar 

  • Frcnkel G, Peterson RN and Freund M (1973a) Changes in the metabolism of guinea pig sperm from different segments of the epididymis. Proc Soc exp Biol Med 143: 1231–1236

    Google Scholar 

  • Frenkel G, Peterson RN and Freund M (1973b) The role of adenine nucleotides and the effect of caffeine and dibutyryl cyclic AMP on the metabolism of guinea pig epididymal spermatozoa. Proc Soc exp Biol Med 144: 420–425

    PubMed  CAS  Google Scholar 

  • Friend DS and Hcuscr JE (1981) Orderly particle arrays on the mitochondrial outer membrane in rapidly frozen sperm. Anat Rec 199: 159–175

    Article  PubMed  CAS  Google Scholar 

  • Gaddum P (1968) Sperm maturation in the male reproductive tract. Development of motility. Anal Rec 161: 471–482

    Article  CAS  Google Scholar 

  • Gaddum P and Glover TD (1965) Some reactions of rabbit spermatozoa to ligation of the epididymis. J Reprod Fert 9: 119–130

    Article  CAS  Google Scholar 

  • Gaddum P, Blandau RJ and Hayashi R (1968) Sperm maturation in the male reproductive tract. Film. University of Washington Press

    Google Scholar 

  • Gaddum-Rosse P (1981) Some observations on sperm transport through the uterotubal junction of the rat. Am J Anat 160: 333–341

    Article  PubMed  CAS  Google Scholar 

  • Gagnon C and Heisler S (1979) Minireview. Protein carboxy-methylation: role in cxocytosis and chemotaxis. Life Sci 25: 993–1000

    Article  PubMed  CAS  Google Scholar 

  • Gagnon C, Sherins RJ, Mann T, Bardin CW, Amelar RD and Dubin L (1980a) Deficiency of protein carboxyl-methylase in spermatozoa of necrospermic patients. In: Testicular Development, Structure, and Function. Eds. A Steinberger and E Steinberger. Raven Press. New York US. pp 491–495

    Google Scholar 

  • Gagnon C, Kelly S, Manganiello V, Vaughn M, Strittmattcr W, Hoffman A and Hirata F (1980b) Protein carboxyl-methylase modifies calmodulin function. Ann NY Acad Sci 356: 385–386

    Article  PubMed  CAS  Google Scholar 

  • Gagnon C, Sherins RJ, Phillips DM and Bardin CW (1982) Deficiency of protein-carboxyl mcthylase in immotile spermatozoa of infertile men. New Engl Med J 306: 821–825

    Article  CAS  Google Scholar 

  • Gagnon C, Harbour D, de Lamirande E, Bardin CW and Dacheux JL (1984) Sensitive assay detects protein mcthylesterase in spermatozoa: decrease in enzyme activity during epididymal maturation. Biol Reprod 30: 953–958

    Article  PubMed  CAS  Google Scholar 

  • Garbers DL, Lust WD, First NL and Lardy HA (1971) Effects of phosphodiesterase inhibitors and cyclic nucleotides on sperm respiration and motility. Biochemistry 10: 1825–1831

    Article  Google Scholar 

  • Garbers DL, Tubb DJ and Hyne RV (1982) A requirement of bicarbonate for Ca2+-induced elevations of cyclic AMP in guinea pig spermatozoa. J Biol Chem 257: 8980–S984

    PubMed  CAS  Google Scholar 

  • Glover TD (1962) The response of rabbit spermatozoa to artificial cryptorchidism and ligation of the epididymis. J Endocr 23: 317–328

    Article  PubMed  CAS  Google Scholar 

  • Gwatkin RBL (1983) Effect of compounds structurally related to taurine and of taurine uptake inhibitors on the motility of hamster sperm in vitro. Gamete Res 4: 347–350

    Article  Google Scholar 

  • Glück K and Paul RJ (1977) The aerobic metabolism of porcine carotid artery and its relationship to isometric force. Energy cost of isometric contraction. Pflügers Arch Ges Physiol 370: 9–18

    Article  Google Scholar 

  • Goh P and Hoskins DD (1985) The involvement of methyl transfer reactions and S-adenosyl-homocysteine in the regulation of bovine sperm motility. Gamete Research 12: 399–409

    Article  CAS  Google Scholar 

  • Gonse PH (1962) Respiration and oxidative phosphorylation in relation to sperm motility. In: Spermatozoon Motility. Ed. DW Bishop, Amer Assoc Adv Sci, Washington DC. pp 99–132

    Google Scholar 

  • Goodman DR and Harbison RD (1981) Characterization of enzymatic acetylcholine synthesis by mouse brain, rat sperm, and purified carnitine acetyltransfcrasc. Biochem Pharmacol 30: 1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Goodman DR, Adatsi FK and Harbison RD (1984) Evidence for the extreme overestimation of choline acetyltransferase in human sperm, human seminal plasma and rat heart: a case of mistaking carnitine acetyltransferase for choline acetyltransferase. Chem Biol Interact 49: 39–53

    Article  PubMed  CAS  Google Scholar 

  • Gordon M and Barrnett RJ (1967) Fine structural cytochemical localizations of phosphatase activities of rat and guinea pig. Exp Cell Res 48: 395–412

    Article  PubMed  CAS  Google Scholar 

  • Gordon M, Morris EG and Young RJ (1983) The localization of Ca2+-ATPase and Ca2+ binding proteins in the flagellum of the guinea pig. Gamete Res 8: 49–55

    Article  Google Scholar 

  • Halangk W, Bohnensack R and Kunz W (1985) Interdependence of mitochondrial ATP production and extramitochondrial ATP utilization in intact spermatozoa. Biochem Biophys Acta 808: 316–322

    Article  PubMed  CAS  Google Scholar 

  • Hammerstedt RH (1975) Tritium release from (2-3H)D-glucose as a monitor of glucose consumption by bovine sperm. Biol Reprod 12: 545–551

    Article  PubMed  CAS  Google Scholar 

  • Hammerstedt RH and Hay SR (1980) Effect of incubation temperature on motility and cAMP content of bovine sperm. Arch Biochem Biophys 199: 427–437

    Article  PubMed  CAS  Google Scholar 

  • Hanksi F. and Garty GNB (1983) Activation of adenylate cyclase by sperm membranes. The role of guanine nucleotide binding proteins. FEBS Letts 162: 447–452

    Article  Google Scholar 

  • Harbison RD, Dwivedi C and Evans MA (1976a) A proposed mechanism for trimethylphosphate induced sterility. Toxicol Appl Pharmacol 35: 481–490

    CAS  Google Scholar 

  • Harbison RD. Orgebin-Crist MC, Dwivedi C and Rama Sastry BV (1976b) Cholincacatyltransferase activity in sperm of rabbit and man: possible involvement in TMP-induced sterility. In: Recent Advances in Contraceptive Technology. Proc Int Symp. pp 125–130

    Google Scholar 

  • Hiipaka RT and Hammerstedt RH (1979) Changes in 2-deoxyglucose transport during epididymal maturation of ram sperm. Biol Reprod 19: 1030–1035

    Article  Google Scholar 

  • Hildebrandt JD, Codina J, Tash JS, Kirchick HJ, Lipschultz L, Sekura (1985) The membrane-bound spermatozoa adenylyl cyclase system does not share coupling characteristics with somatic cell adenylyl cyclases. Endocrinology 116: 1357–1366

    Article  PubMed  CAS  Google Scholar 

  • Hinton BT (1980) The epididymal microenvironment. A site of attack for a male contraceptive? Invest Urol 18: 1–10

    PubMed  CAS  Google Scholar 

  • Hinion BT and Setchell BP (1980) Concentration and uptake of carnitine in the rat epididymis. A micropuncture study. In: Carnitine Biosynthesis, Metabolism, and Function. Eds. RA Frenkel and JD McGarry, Acad Press, New York, pp 237–250

    Google Scholar 

  • Hinton BT, Doit HM and Setchell BP (1979) Measurement of the motility of rat spermatozoa collected by micropuncturc from the testis and from different regions along the epididymis. J Reprod Fert 55: 167–172

    Article  CAS  Google Scholar 

  • Hinton BT, Brooks DE, Doit HM and Setchell BP (1981) Effects of carnitine and some related compounds on the motility of rat spermatozoa from the caput epididymidis. J Reprod Fert 61: 59–64

    Article  CAS  Google Scholar 

  • Hirata F and Axelrod J (1980) Phospholipid melhylation and biological signal transmission. Science 209: 1082–1090

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JF (1969) The interaction between tritiated ouabain and the Na-K pump in red blood cells. J Gen Physiol 54: 343S–350S

    Google Scholar 

  • Hong CY, Chiang BN and Wei YH (1983) Mitochondrial respiration inhibitors and human sperm motility: implications in the development of spermicides. Brit J Clin Pharm 16: 487–490

    PubMed  CAS  Google Scholar 

  • Horan AH and Bedford JM (1972) Development of the fertilizing ability of spermatozoa in the epididymis of the Syrian hamster. J Reprod Fert 30: 417–423

    Article  CAS  Google Scholar 

  • Hoskins DD (1973) Adenine nucleotide mediation of fructolysis and motility in bovine epididymal spermatozoa. J Biol Chem 248: 1135–1140

    PubMed  CAS  Google Scholar 

  • Hoskins DD and Casillas ER (1975a) Function of cyclic nucleotides in mammalian spermatozoa. In: Handbook of Physiology. Section and Endocrinology, Volume 5 Male Reproductive System. Eds. DW Hamilton and RO Greep. American Physiol. Soc., Washington DC. pp 453–460

    Google Scholar 

  • Hoskins DD and Casillas ER (1975b) Hormones, second messengers, and the mammalian spermatozoon. In: Molecular mechanisms of gonadal hormone action. Vol 1. Eds. JA Thomas and RL Singhal, HM and M Medical Scientific Publishers, Aylesbury. pp 283–324

    Google Scholar 

  • Hoskins DD, Stephens DT and Hall ML (1974) Cyclic adenosine 3′:5′-monophosphalc and protein kinase levels in developing bovine spermatozoa. J Reprod Fert 37: 131–133

    Article  CAS  Google Scholar 

  • Hoskins DD, Munsterman D and Hall ML (1975a) The control of bovine sperm glycolysis during epididymal transit. Biol Reprod 12: 566–572

    Article  PubMed  CAS  Google Scholar 

  • Hoskins DD, Hall ML and Munsterman D (1975b) Induction of motility in immature bovine spermatozoa by cyclic AMP phosphodiesterase inhibitors and seminal plasma. Biol Reprod 13: 168–176

    Article  PubMed  CAS  Google Scholar 

  • Hoskins DD, Brandt H and Acott TS (1978) Initiation of sperm motility in the mammalian epididymis. Fed Proc 37: 2534–2542

    PubMed  CAS  Google Scholar 

  • Hoskins DD, Johnson D, Brandt H and Acott TS (1979) Evidence for a role for a forward motility protein in the epididymal development of sperm motility. In: The Spermatozoon. Eds. DW Fawcett and JM Bedford, Urban and Schwarzenherg, Baltimore, pp 43–53

    Google Scholar 

  • Hoskins DD, Acott TS, Critzchlow L and Vijayaraghavan S (1983) Studies on the roles of cyclic AMP and calcium in the development of bovine sperm motility. J Submicroscop Cytol 15: 21–27

    CAS  Google Scholar 

  • Howe GR and Black DL (1963) Migration of rat and foreign spermatozoa through the uterotubal junction of the ocstrous rat. J Reprod Pert 5: 95–100

    Article  CAS  Google Scholar 

  • Hunter RUF, Cook B and Poyser NL (1983) Regulation of oviduct function in pigs by local transfer of ovarian steroids and prostaglandins: a mechanism to influence sperm ascent. Europ J Obstet Gynaecol Reprod Biol 14: 225–232

    Article  CAS  Google Scholar 

  • Hyne RV and Garbers DL (1979a) Calcium-dependent increase in adenosinc-3′,5′-monophosphate and induction of the acrosome reaction in guinea pig spermatozoa. Proc Nat Acad Sci US 76: 5699–5703

    Article  CAS  Google Scholar 

  • Hyne RV and Garbers DL (1979b) Regulation of guinea pig sperm adenylate cyclase by calcium. Biol Reprod 21: 1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Inskeep PB and Hammerstedt RH (1982) Changes in metabolism of ram sperm associated with epididymal transit or induced by endogenous carnitine. Biol Reprod 27: 735–743

    Article  PubMed  CAS  Google Scholar 

  • Inskeep PB and Hammerstedt RH (1985) Endogenous metabolism of sperm in response to altered cellular ATP requirements. J Cell Physiol 123: 180–190

    Article  PubMed  CAS  Google Scholar 

  • Jakobs KH, Johnson RA and Schultz G (1983) Activation of human platelet adenylate cyclase by a bovine sperm component. Biochern Biophys Acta G756: 369–375

    CAS  Google Scholar 

  • Johnson RA, Awad JA, Jakobs KS and Schultz G (1983) Activation of brain adenylate cyclase by a factor derived from bovine sperm. FEBS Lett 152: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Johnson RA, Jakobs KH and Schultz G (1985) Extraction of the adenylate cyclasc-activating factor of bovine sperm and its identification as a trypsin-like protease. J Biol Chem 260: 114–121

    PubMed  CAS  Google Scholar 

  • Jones RC (1971) Studies of the structure of the head of boar spermatozoa from the epididymis. J Reprod Fert Suppl 13: 51–64

    Google Scholar 

  • Jones R (1978) Comparative biochemistry of mammalian epididymal plasma. Comp Biochem Biophys 61B: 365–370

    Article  CAS  Google Scholar 

  • Jones HP, Lenz RW, Palevitz BA and Cormier MJ (1980a) Calmodulin localization in mammalian spermatozoa. Proc Nat Acad Sci US 77: 2772–2776

    Article  CAS  Google Scholar 

  • Jones HP, Lenz RW, Palevitz BA and Cormier MJ (1980b) Localization of calmodulin in mammalian spermatozoa by immunofluorescence methods. Annals NY Acad Sci US 356: 393–394

    Article  CAS  Google Scholar 

  • Joshi MS, Yaron A and Lindner HR (1972) Intrauterine gelation of seminal plasma components in the rat after coitus. J Reprod Fert 30: 27–37

    Article  CAS  Google Scholar 

  • Jouannet P (1981) Movement of human spermatozoa from caput epididymis. In: Epididymis and Fertility: Biology and Pathology. Eds. C Bollaek and A Clavert, Karger. Munich, pp 100–101

    Google Scholar 

  • Kann ML and Serres C (1980) Development and initiation of sperm motility in the hamster epididymis. Reprod Nutr Develop 20: 1739–1749

    Article  CAS  Google Scholar 

  • Kann ML and Raynaud F (1982) In vivo fertilization after initiation of sperm motility in the hamster epididymis. Reprod Nutr Develop 22: 455–463

    Article  CAS  Google Scholar 

  • Klinefelter GR and Hamilton DW (1984) Organ culture of rat caput epididymal tubules in a perifusion chamber. J Androl 5: 243–258

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Martensen T, Nath J and Flavin M (1978) Inhibition of dyncin ATPase by vanadate, and its possible use as a probe for the role of dyncin in cytoplasmic motility. Biochem Biophys Res Commun 81: 1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Kremer J and Jager S (1976) The sperm-cervical mucus contact test: a preliminary report. Fert Steril 27: 335–340

    CAS  Google Scholar 

  • Kremer J, Jager W, Kuiken J and van Slochtcren-Draaisma (1978) Recent advances in diagnosis and treatment of infertility due to antisperm antibodies. In: Spermatozoa, Antibodies and Infertility. Eds. J Cohen and WF Hendry, Blackwell. Oxford, pp 117–127

    Google Scholar 

  • Lambiase JT and Amann RP (1973) Infertility of rabbit testicular spermatozoa collectcd in their native environment. Fert Steril 24: 65–67

    Google Scholar 

  • Lea OA and French PS (1981) Characterization of an acidic glycoprotein secreted by principal cells of the rat epididymis. Biochem Biophys Acta 668: 370–376

    PubMed  CAS  Google Scholar 

  • Lea OA, Petrusz P and French FS (1978) Purification and localization of acidic epididymal glycoprotein (AEG): a sperm coating protein secreted by the rat epididymis. Int J Androl Suppl 2: 592–607

    Article  CAS  Google Scholar 

  • Lee WM, Tsang AYF and Wong PYD (1981) Effects of divalent and lanlhanidc ions on motility initiation in rat caudal epididymal spermatozoa. Brit J Pharmac 73: 633–638

    CAS  Google Scholar 

  • Linck RW (1979) Advances in the ultrastructural analysis of the sperm flagellar axoneme. In: The Spermatozoon. Eds. DW Fawcett and JM Bedford, Urban and Schwarzenberg, Baltimore. pp 99–115

    Google Scholar 

  • Lindahl PF (1978) Head-to-head association in bovine spermatozoa induced by catecholamines. Exp Cell Res 113: 421–433

    Article  PubMed  CAS  Google Scholar 

  • Lindemann CB (1978) A cAMP-induccd increase in the motility of demembranated bull sperm models. Cell 13: 9–18

    Article  PubMed  CAS  Google Scholar 

  • Lindemann CB (1980) Requirements for motility in mammalian sperm. In: Testis structure, Development, and Function. Eds. A. Steinherger and E. Steinberger, Raven Press, New York, pp 473–479

    Google Scholar 

  • Lindemann CB and Gibbons IR (1975) Adenosine triphosphate-induced motility and sliding of filaments in mammalian sperm extracted with Triton X-100. J Cell Biol 65: 147–162

    Article  PubMed  CAS  Google Scholar 

  • Lindemann CB and Rikmenspoel R (1971) Intracellular potentials in bull spermatozoa. J Physiol 219: 127–138

    PubMed  CAS  Google Scholar 

  • Lindemann CB and Rikmenspoel R (1972a) Sperm flagellar autonomous oscillations of the contractile system. Science 175: 337–338

    Article  PubMed  CAS  Google Scholar 

  • Lindemann CB and Rikmenspoel R (1972b) Sperm flagellar motion maintained by ADP. Exp Cell Res 73: 255–259

    Article  PubMed  CAS  Google Scholar 

  • Lindemann CB, Rudd WG and Rikmenspoel R (1973) The stiffness of the flagella of impaled bull sperm. Biophys J 13: 437–448

    Article  PubMed  CAS  Google Scholar 

  • Lindemann CB, Fentie I and Rikmenspoel R (1980) A selective effect of Ni2+ on wave initiation in bull sperm flagella. J Cell Biol 87: 420–426

    Article  PubMed  CAS  Google Scholar 

  • Lindemann CB, Lipton M and Shlafer R (1983) The interaction of cAMP with modeled bull sperm. Cell Motility 3: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Lindholmer C (1974) The importance of seminal plasma for human sperm motility. Biol Reprod 10: 533–542

    Article  PubMed  CAS  Google Scholar 

  • Little M and Rohriehl C (1983) Pig sperm tail tubulin. Its extraction and characterization. Exp Cell Res 147: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Llanos MN and Meizel S (1983) Phospholipid methylation increases during capacitation of golden hamster sperm in vitro. Biol Reprod 28: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Maas JW and Colburn RW (1965) Co-ordination chemistry and membrane function with particular reference to the synapse and catecholamine transport. Nature 208: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Majumder GC (1981) Enzymic characteristics of ecto-adenosine triphosphatase in rat epididymal intact spermatozoa. Biochem J 195: 103–110

    PubMed  CAS  Google Scholar 

  • Majumder GC and Biswas R (1979) Evidence for the occurence of an ecto-(adenosine triphosphatase) in rat epididymal spermatozoa. Biochem J 183: 737–743

    PubMed  CAS  Google Scholar 

  • Majumder GC and Chaudhuri DP (1984) Occurence of -SH containing molecules on the goat sperm external surface that arc essential for flagellar motility. Andrologia 16: 219–223

    Article  PubMed  CAS  Google Scholar 

  • Marian J and Shepherd BA (1976) The role of the copulatory plug in reproduction of the guinea pig. J exp Zool 196: 79–84

    Article  Google Scholar 

  • McGrady A (1979) The effect of ouabain on membrane potential and flagellar wave in ejaculated bull spermatozoa. J Reprod Fert 56: 549–553

    Article  CAS  Google Scholar 

  • McGrady and Nelson L (1972) Cationic influences on sperm biopotentials. Exp Cell Res 73: 192–196

    Article  PubMed  CAS  Google Scholar 

  • McGrady AV and Nelson L (1973) Electrophysiology of bull spermatozoa. Correlations with motility. Exp Cell Res 76: 349–352

    Article  PubMed  CAS  Google Scholar 

  • McGrady AV and Nelson L (1974) Effect of calcium on bull spcrmatozoan membrane potential. Exp Cell Res 87: 398–400

    Article  PubMed  CAS  Google Scholar 

  • McGrady AV and Nelson L (1976) Cholinergic effects on bull and chimpanzee sperm motility. Biol Reprod 15: 248–253

    Article  PubMed  CAS  Google Scholar 

  • McGrady AV, Nelson L and Ireland M (1974) Ionic effects on the motility of bull and chimpanzee spermatozoa. J Reprod Fert 40: 71–76

    Article  CAS  Google Scholar 

  • McLaughlin J and Tcrner C (1973) Ribonucleic acid synthesis by spermatozoa from the rat and hamster. Biochem J 133: 635–639

    Google Scholar 

  • Means AR, Tash JS and Chaouleas JG (1982) Physiological implications of the presence. distribution, and regulation of calmodulin in Eukaryotic cells. Physiol Rev 62: 1–39

    PubMed  CAS  Google Scholar 

  • Meizel S (1981) Inhibition of the hamster sperm acrosome reaction by transmethylase inhibitors. J exp Zool 217: 443–446

    Article  PubMed  CAS  Google Scholar 

  • Meizel S, Lui CW, Working PK and Mrsny KJ (1980) Taurine and hypotaunne: their effects on motility, capacitation and the acrosome reaction of hamster sperm in vitro and their presence in sperm and reproductive tract fluids of several mammals. Develop Growth Diff 22: 483–494

    Article  CAS  Google Scholar 

  • Moghissi KS, Dabich D, Levine J and Neuhaus OW (1964) Mechanism of sperm migration. Fert Steril 15: 15–23

    CAS  Google Scholar 

  • Mohri H and Ogawa K (1975) Tubulin and dynein in spermatozoon motility. In: The Functional Anatomy of the Spermatozoon. Ed BA Afzelius. Pergamon Press. Oxford, pp 161–167

    Google Scholar 

  • Mohri H and Yanagimachi R (1980) Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa. A study using demembranated sperm models. Exp Cell Res 127: 191–196

    Article  PubMed  CAS  Google Scholar 

  • Mohri H and Yano Y (1980) Analysis of mechanism of flagellar movement with golden hamster spermatozoa. Biomcd Res 1: 552–555

    Google Scholar 

  • Mohri H and Yano Y (1982) Reactivation and microtubule sliding in rodent spermatozoa. Cell Motility Suppl 1: 143–147

    Article  Google Scholar 

  • Mohri H, Mohri T and Ernster L (1965) Isolation and cnzymic properties of the midpiece of bull spermatozoa. Exp Cell Res 38: 217–246

    Article  PubMed  CAS  Google Scholar 

  • Mohri H, Ishijima S and Hiramoto Y (1983) Movement characteristics of hamster spermatozoa. In: The Sperm Cell. Ed J Andre. Martinus-Nijhoff, London, pp 345–348

    Chapter  Google Scholar 

  • Mongkolsirikieat S and Boonsaeng V (1980) Increase in sperm type hexokinase activity of rat spermatozoa during maturation. Int J Androl 3: 671–678

    Article  PubMed  CAS  Google Scholar 

  • Mooney JK, Horan AH and Lattimer JK (1972) Motility of spermatozoa in the human epididymis. J Urol 108: 443–445

    PubMed  Google Scholar 

  • Morton B (1973) Reactivation of progressive motility in hamster sperm modified by Triton X-100. Exp Cell Res 79: 106–110

    Article  PubMed  CAS  Google Scholar 

  • Morton BE and Sagadraca R (1981) Quantitation of sperm population migration: capillary scanning assay. Archs Androl 7: 219–227

    Article  CAS  Google Scholar 

  • Morton B, Uarrigan-Lum J, Albagli L and Joos T (1974) The activation of motility in quiescent hamster sperm from the epididymis by calcium and cyclic nucleotides. Biochem Biophys Res Commun 56: 372–379

    Article  PubMed  CAS  Google Scholar 

  • Morton BE, Fraser CF and Albagli L (1979) Studies on factors in hamster caudal epididmal plasma and other sources which inhibit sperm dilution damage. Fert Steril 32: 99–106

    CAS  Google Scholar 

  • Mrsny RJ and Meizel S (1985) Inhibition of hamster sperm Na+, K+-ATPase activity by taurine and hypotaurine. Life Sci 36: 271–275

    Article  PubMed  CAS  Google Scholar 

  • Murdoch RN and White IG (1968) Metabolic studies of testicular, epididymal, and ejaculated spermatozoa of the ram. Aust J Biol Sci 21: 111–121

    PubMed  CAS  Google Scholar 

  • Nachmansohn D and Schneemann H (1945) The effect of drugs on cholinesterase. J Biol Chem 159: 239–240

    CAS  Google Scholar 

  • Nagano T (1965) Localization of adenosine triphosphatase activity in the rat sperm tail as revealed by electron microscopy. J Cell Biol 25: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Nelson L (1962) Cytochemical aspects of spermatozoan motility. In: Spermatozoan Motility. Ed. DW Bishop. Amer Assoc Adv Sci. Washington DC. pp 171–187

    Google Scholar 

  • Nelson L (1966) Enzyme distribution in “naturally-decapacitatcd” bull spermatozoa: acetylcholinesterase, adenvlpvrophosphatase and adenosinetriphosphatase. J exp Phvsiol 68: 113–116

    CAS  Google Scholar 

  • Nelson L (1967) Sperm Motility. In: Fertilization. Comparative Morphology. Biochemistry and Immunology. Eds. CB Metz and A Monroy. Vol I. Acad Press. London, pp 27–97

    Google Scholar 

  • Nelson L (1975) Control of sperm motility: a neurochemical approach. In: The Functional Anatomy of the Spermatozoon. Ed. BA Afzelius. Pergamon Press, Oxford, pp 169–176

    Google Scholar 

  • Nelson L (1978) Chemistry and ncurochcmistry of sperm motility control. Fed Proc 37: 2543–2547

    PubMed  CAS  Google Scholar 

  • Nelson L (1979) Second messenger control of sperm motility. In: Motility in Cell Function. Eds. FA Pope, JW Sanger and VT Nachmias, Acad Press, London, pp 453–455

    Google Scholar 

  • Nelson L, Chakraborty J, Young M, Goodwin A, Kock E and Gardner ME (1980a) Control of sperm cell motility: neurochemical regulation of calcium transport. In: Testicular Development. Structure, and Function. Eds. A Steinberger and E. Steinberger, Raven Press, New York, pp 503–511

    Google Scholar 

  • Nelson L, Young MJ and Gardner ME (1980b) Sperm motility and calcium transport: a neurochemically controlled process. Life Sci 26: 1739–1749

    Article  PubMed  CAS  Google Scholar 

  • Nelson L, Gardner ME and Young MJ (1980c) Calcium binding in relation to sperm motility control. In: Calcium Binding Proteins: structure and function. Eds. FL Siegel, F. Carafoli, DH MacLennon and RH Wasserman. Elsevier North Holland, pp 495–498

    Google Scholar 

  • Nelson L, Gardner ME and Young MJ (1982) Regulation of calcium distribution in bovine sperm cells: cytochemical evidence for motility control mcchanisms. Cell Motility 2: 225–242

    Article  PubMed  CAS  Google Scholar 

  • Nevo AC and Rikmcnspoel R (1970) Diffusion of ATP in sperm flagella. J Theoret Biol 26: 11–18

    Article  CAS  Google Scholar 

  • Noyes RW, Adam CE and Walton A (1958) Transport of spermatozoa into the uterus of the rabbit. Fert Steril 9: 288–299

    CAS  Google Scholar 

  • O’Day PM and Rikmenspoel R (1979) Electrical control of flagellar activity in impaled bull spermatozoa. J Cell Sci 35: 123–138

    PubMed  Google Scholar 

  • O’Donnell JM (1969) Electrical counting and sizing of mammalian spermatozoa and cytoplasmic droplets. J Reprod Fert 19: 263–272

    Article  Google Scholar 

  • O’Donnell JM and Ellory JC (1969) Cardiac glycoside binding and alkali cation transport in mature and epididymal bull spermatozoa. J Reprod Fert 20:359–360 Abs

    Article  Google Scholar 

  • O’Donnell JM and Ellory JC (1970a) The binding of cardiac glycosides to bull spermatozoa. Experientia 26: 20–21

    Article  PubMed  Google Scholar 

  • O’Donnell JM and Ellory JC (1970b) The binding of ouabain to spermatozoa of boar and ram. J Reprod Fert 23: 181–184

    Article  Google Scholar 

  • Olson GE and Linck RW (1977) Observations on the structural components of flagellar axonemes and central pair of microtubules from rat sperm. J Ultrastruct Res 61: 21–43

    Article  PubMed  CAS  Google Scholar 

  • Olson GE and Sammons DW (1980) Structural chemistry of outer dense fibres of rat sperm. Biol Reprod 22: 319–332

    Article  PubMed  CAS  Google Scholar 

  • Orgebin-Crist MC (1967a) Maturation of spermatozoa in the rabbit epididymis: fertilizing ability and embryonic mortality in docs inseminated with epididymal spermatozoa. Ann biol Anim Biochem Biophys 7: 373–389

    Article  Google Scholar 

  • Orgebin-Crist MC (1967b) Sperm maturation in rabbit epididymis. Nature (Lond.) 216: 816–818

    Article  CAS  Google Scholar 

  • Orgebin-Crist MC (1968) Maturation of spermatozoa in the rabbit epididymis: Delayed fertilization in does inseminated with epididymal spermatozoa. J Reprod Fert 16: 29–33

    Article  CAS  Google Scholar 

  • Orgebin-Crist MC (1973) Maturation of spermatozoa in the rabbit epididymis: effect of castration and testosterone replacement. J exp Zool 185: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Orgebin-Crist MC, Olson GE and Danzo BJ (1981) Factors influencing maturation of spermatozoa in the epididymis. In: Intragonadal Regulators of Reproduction, Eds. P Franchimont and CP Channing. Academic Press, New York, pp 393–417

    Google Scholar 

  • O’Shea T and Voglmayr JK (1970) Metabolism of glucose, lactate, and acetate by testicular and ejaculated spermatozoa of the ram. Biol Reprod 2: 326–332

    Article  PubMed  Google Scholar 

  • Overstreet JW and Bedford JM (1974) Transport, capacitation and fertilizing ability of epididymal spermatozoa. J exp Zool 189: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Overstreet JW and Bedford JM (1976) Embryonic mortality in the rabbit is not increased after fertilization by young epididymal spermatozoa. Biol Reprod 15: 54–57

    Article  PubMed  CAS  Google Scholar 

  • Overstreet JW and Cooper GW (1978) Sperm transport in the reproductive tract of the female rabbit: I. The rapid transit phase of transport. Biol Reprod 19: 101–114

    Article  PubMed  CAS  Google Scholar 

  • Overstreet JW and Katz DF (1977) Sperm transport and selection in the female genital tract. In: Development in Mammals. Ed MH Johnson, North Holland Pub Co, Oxford. Vol 2: 31–65

    Google Scholar 

  • Overstreet JW and Tom RA (1982) Experimental studies of rapid sperm transport in rabbits. J Reprod Fert 66: 601–606

    Article  CAS  Google Scholar 

  • Panse GT, Jayarraman S and Sheth AR (1983) Shift of glycolysis as a marker of sperm maturation. Archs Androl 11: 137–140

    Article  CAS  Google Scholar 

  • Pariset CC, Feinberg JMF, Dacheux JL and Weinman SJ (1985) Changes in calmodulin level and cAMP-dependent protein kinase activity during epididymal maturation of ram spermatozoa. J Reprod Fert 74: 105–112

    Article  CAS  Google Scholar 

  • Paul RJ, Bauer M and Pease W (1979) Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science 206: 1414–1416

    Article  PubMed  CAS  Google Scholar 

  • Pavlok A (1974) Development of the penetrating activity of mouse spermatozoa in vivo and in vitro. J Reprod Fert 36: 203–205

    Article  CAS  Google Scholar 

  • Paz(Frenkel) G, Kaplan R, Yedwab G, Homonnia ZT and Kraicer PF (1978) The effect of caffeine on rat epididymal spermatazoa: motility, metabolism and fertilizing capacity. Int J Androl 1: 145–152

    Article  CAS  Google Scholar 

  • Pederson H and Rebbe H (1975) Absence of arms in the axoneme of immoble human spermatozoa. Biol Reprod 12: 541–544

    Article  Google Scholar 

  • Perloff WH and Steinberger E (1963) In vitro penetration of cervical mucus by spermatozoa. Fert Steril 14:231–236

    CAS  Google Scholar 

  • Peterson RN, Seyler D, Bundman D and Freund M (1979) The effect of theophylline and dibutyryl cyclic AMP on the uptake of radioactive calcium and phosphate ions by boar and human spermatozoa. J Reprod Fert 55: 385–390

    Article  CAS  Google Scholar 

  • Peterson RN, Ashraf M and Russell LD (1983) Effect of calmodulin antagonists on Ca2+ uptake by boar spermatozoa. Biochem Biophys Res Commun 114: 28–33

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM and Olson G (1975) Mammalian sperm motilily-structure in relation to function. In: The Functional Anatomy of the Spermatozoon. Ed BA Afzelius, Pergamon Press, Oxford, pp 117–126

    Google Scholar 

  • Pholpramool C and Chaturapanich G (1979) Effect of sodium and potassium concentration and pH on the maintenance of motility of rabbit and rat epididymal spermatozoa. J Reprod Fert 57: 245–251

    Article  CAS  Google Scholar 

  • Pholpramool C, Lea OA, Burrow PV, Doll HM and Setchell BP (1983) The effects of acidic epididymal glycoprotein ( AEG) and some other proteins on the motility of rat epididymal spermatozoa. Int J Androl 6: 240–248

    Article  PubMed  CAS  Google Scholar 

  • Purvis K, Cusan L, Attramadal H, Ege A and Hansson V (1982) Rat sperm enzymes during epididymal transit. J Reprod Fert 65: 381–387

    Article  CAS  Google Scholar 

  • Raff EC and Blum JJ (1968) A possible role for adenylate kinase in cilia: concentration profiles in a geometrically constrained dual enzyme system. J Theoret Biol 18: 53–71

    Article  CAS  Google Scholar 

  • Rama Sastry BV and Sadavongvivad C (1978) Cholinergic systems in non-nervous tissues. Pharmacol Rev 30: 65–132

    Google Scholar 

  • Rama Sastry BV, Jensen BV and Chaturvedi AK (1981) Inhibition of human sperm motility by-inhibitors of choline acetyltransferase. J Pharm exp Therap 216: 378–384

    Google Scholar 

  • Reed PW and Lardy HA (1972) Antibiotic A23187 as a probe for the study of calcium and magnesium function in biological systems. In: The Role of Membranes in Metabolic Regulation. Eds. MA Mehlmnan and RW Hanson. Acad Press, London, pp 111–131

    Google Scholar 

  • Reyes A and Chavarria M (1981) Interference with epididymal physiology as possible site of male contraception. Archs Androl 7: 159–168

    Article  CAS  Google Scholar 

  • Reyes A, Mercado E, Goicoechea B and Rosado A (1976) Participation of membrane sulfydryls groups in the epididymal maturation of human and rabbit spermatozoa. Fert Steril 27: 1452–1458

    CAS  Google Scholar 

  • Reyes-Fuentes A, and Chavarria-Olarte ME (1980) Interferencia con la maduracion epididimaria del espermatozoidc. Gaceta Medicale de Mexico 116: 312–318

    CAS  Google Scholar 

  • Rikmenspoel R (1965a) The inhibition by amytal of respiration and motility of bull spermatozoa. Exp Cell Res 37: 312–326

    Article  PubMed  CAS  Google Scholar 

  • Rikmenspoel R (1984) Movements and active moments of bull sperm fiagella as a function of temperature and viscosity. J exp Biol 108: 205–230

    PubMed  CAS  Google Scholar 

  • Rikmenspoel R, Sinton S and Janick JJ (1969) Energy conservation in bull sperm flagella. J Gen Physiol 54: 782–805

    Article  PubMed  CAS  Google Scholar 

  • Rikmenspoel R, Orris SE and O’Day PM (1978) Ionic-requirements of impaled hull spermatozoa driven by external ADP and ATP. Exp Cell Res 111: 253–259

    Article  PubMed  CAS  Google Scholar 

  • Rikmenspoel R, Orris SE and Isles CA (1981) Effects of vanadate, Mg2+ and electric currentinjection on the stiffness of impaled bull spermatozoa. J Cell Sci 51: 53–61

    PubMed  CAS  Google Scholar 

  • Rossman I (1937) Uterine contractions and the transport of sperm in the rat. Anat Rec 69: 133–149

    Article  Google Scholar 

  • Rufo GA, Schoff PK and Lardy HA (1984) Regulation of calcium content in bovine spermatozoa. J Biol Chem 259: 2547–2552

    PubMed  CAS  Google Scholar 

  • Saling PM (1982) Development of the ability to bind to zonae pellucidae during epididymal maturation: reversible immobilisation of mouse spermatozoa by lanthanum Biol Reprod 26: 429–436

    CAS  Google Scholar 

  • Salisbury GW (1956) The function of the epididymis of the bull.I. A theory for the activation of spermatozoan motility. Tijdschr. Diergeneesk 87: 616–623

    Google Scholar 

  • Sanyal RK and Khanna SK (1971) Action of cholinergic drugs on motility of spermatozoa. Pharmacol Rev 30: 65–132

    Google Scholar 

  • Satir P (1979) Basis of flagellar motility in spermatozoa: current status. In: The Spermatozoon. Eds. DW Fawcett and JM Bedford, Urban and Schwarzenberg, Baltimore, pp 81–90

    Google Scholar 

  • Sattayasai N and Panyim S (1982) Nature of the proteins which form disulfide bonds during the maturation of rat spermatozoa. Int J Androl 5: 337–344

    Article  PubMed  CAS  Google Scholar 

  • Sekine T (1951) Choline esterase in pig spermatozoa. J Biochem (Tokyo) 38: 171–179

    CAS  Google Scholar 

  • Serres C and Kann ML (1984) Motility induction in hamster spermatozoa from caput epididymidis: effects of forward motility protein (FMP) and calmodulin inhibitor. Reprod Nutr Develop 24: 81–94

    Article  CAS  Google Scholar 

  • Setchell BP and Hinton BT (1981) The effects on the spermatozoa of changes in the composition of luminal fluid as it passes along the epididymis. In: Epididymis and Fertility: Biology and Pathology. Eds. C Bollack and A Clavert. Karger. Munich, pp 58–66

    Google Scholar 

  • Setchell BP, Scott TW, Voglmayr JK and Waites GMH (1969) Characteristics of testicular spermatozoa and the fluids which transport them into the epididymis. Biol Reprod Suppl 1: 40–66

    Article  Google Scholar 

  • Sexton TJ, Amann RP and Flipse RJ (1971) Free amino acids and protein in rete testis fluid, vas deferens plasma, and accessory sex gland fluid and seminal plasma of the conscious bull. J Dairy Set 54: 412–416

    Article  CAS  Google Scholar 

  • Shilon M, Paz(Frenkel) G, Homonnai ZT and Schoenbaum M (1978) The effect of caffeine on guinea pig epididymal spermatozoa: motility and fertilizing capacity. Int J Androl 1: 416–423

    Article  CAS  Google Scholar 

  • Singh JP, Babcock DF and Lardy HA (1983) Motility activation, respiratory stimulation and alteration of Ca2+ transport in bovine sperm treated with amine local anaesthetics and calcium transport antagonists. Archs Biochem Biophys 221: 291–303

    Article  Google Scholar 

  • Smith MB, Babcock DF and Lardy HA (1985) A 31P NMR study of the epididymis and epididymal sperm of the bull and hamster. Biol Reprod 33: 1029–1040

    Article  PubMed  CAS  Google Scholar 

  • Smithwick EB and Young LG (1977) Isolation of plasmalemmae-frec, mitochondria-free bull sperm flagella. Biol Reprod 17: 443–452

    Article  PubMed  CAS  Google Scholar 

  • Smithwick EB and Young LG (1978) Ultrastructural evaluation of the isolation of mitochondria-free bull sperm flagella. Biol Reprod 19: 280–290

    Article  PubMed  CAS  Google Scholar 

  • Stengel D and Hanoune J (1981) The catalytic unit of ram sperm adenylate cyclase can be activated through the guanine nucleotide regulatory component and prostaglandin receptors of human erythrocyte. J Biol Chem 256: 5394–5398

    PubMed  CAS  Google Scholar 

  • Stengel D, Guenet L, Desmier M, Inscl P and Hanounc J (1982) Forskolin requires more than the catalytic unit to activate adenylate cyclase. Mol Cell Endocr 28: 681–690

    Article  CAS  Google Scholar 

  • Stephens DT, Wang JL and Hoskins DD (1979) The cyclic AMP phosphodiesterase of bovine spermatozoa: multiple forms, kinetic properties and changes during development. Biol Reprod 20: 483–491

    Article  PubMed  CAS  Google Scholar 

  • Stephens DT, Acott TS and Hoskins DD (1981) A cautionary note on the determination of forward motility protein activity with bovine cpididymal spermatozoa. Biol Reprod 25: 945–949

    Article  PubMed  CAS  Google Scholar 

  • Stewart TA and Forrester IT (1976) Choline acetyltransferasc activity in ram spermatozoa. Proc U Otago Med Sch 54: 53–54

    CAS  Google Scholar 

  • Stewart TA and Forrester IT (1978a) Acetylcholinesterase and choline acctyltransferase in ram spermatozoa. Biol Reprod 19: 271–279

    Article  PubMed  CAS  Google Scholar 

  • Stewart TA and Forrester IT (1978b) Identification of a cholinergic receptor in ram spermatozoa. Biol Reprod 19: 965–970

    Article  PubMed  CAS  Google Scholar 

  • Stewart TA and Forrester IT (1978c) Acetylcholine-mediated control of spermatozoan motility. Proc U Otago Med Sch 56: 27

    Article  CAS  Google Scholar 

  • Stewart TA and Forrester IT (1979) Acetylcholine-induced calcium movements in hypotonically washed ram permatozoa Biol Reprod 21: 109–115

    CAS  Google Scholar 

  • Storey BT and Kayne FJ (1975) Energy metabolism of spcrmatozoa.V. The Embden-Meyerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa. Fert Steril 26: 1257–1265

    CAS  Google Scholar 

  • Storey BT and Kayne FJ (1980) Properties of pyruvate kinase and flagellar ATPase in rabbit spermatozoa: relation to metabolic strategy of the sperm cell. J exp Zool 211: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Summers K (1974) ATP-induccd sliding of microtubules in bull sperm flagella. J Cell Biol 609: 321–324

    Article  Google Scholar 

  • Tabor CW and Rosenthal SM (1956) Pharmacology of spermine and spermidine. Some effects on animals and bacteria. J Pharm exp Therap 116: 139–155

    CAS  Google Scholar 

  • Tamblyn TM (1980) Identification of actin in boar epididymal spermatozoa. Biol Reprod 22: 727–734

    PubMed  CAS  Google Scholar 

  • Tamblvn TM (1981) Evidence for nonmuscle myosin in bovine ejaculated spermatozoa. Gamete Res 4: 499–506

    Article  Google Scholar 

  • Tang FY and Hoskins DD (1975) Phosphoprotein phosphatase of bovine epididymal spermatozoa. Biochem Biophys Res Commun 62: 328–385

    Article  PubMed  CAS  Google Scholar 

  • Tash JS (1976) Investigations on adenosine 3′,5′-monophosphate phosphodiesterase in ram semen and initial characterization of a sperm-specific isoenzyme. J Reprod Fert 47: 63–72

    Article  CAS  Google Scholar 

  • Tash JS and Means AR (1982) Regulation of protein phosphorylation and motility of sperm bycyclic adenosine monophosphate and calcium. Biol Reprod 26: 745–763

    Article  PubMed  CAS  Google Scholar 

  • Tash JS and Means AR (1983) Cyclic adenosine 3′,5′monophosphate. calcium and protein phosphorylation in flagellar motility. Biol Reprod 28: 75–104

    Article  PubMed  CAS  Google Scholar 

  • Tash JS, Kakar SS and Means AR (1984) Flagellar motility requires the cAMP-depcndent phosphorylation of a heat-stable NP-40-soluble 56kd protein, axokinin. Cell 38: 551–559

    Article  PubMed  CAS  Google Scholar 

  • Terner C, MacLaughlin J and Smith BR (1975) Changes in lipase and phosphatase activities of rat spermatozoa in transit from the caput to the cauda epididymidis. J Reprod Fert 45: 1–8

    Article  CAS  Google Scholar 

  • Terner C, Holtz A, Brcnnan RG and Battista D (1980) Androgen control of phosphodiesterase modulator in epididymis and prostate of rat. Fed Proc 39:Abst 3765

    Google Scholar 

  • Tongkao D and Chulavatnatol M (1979) Phosphorylation of microtubules of rat spermatozoa during epididymal maturation. In: The Spermatozoon. Eds DW Fawcett and JM Bedford. Urban and Schwarzenberg, Baltimore, pp 129–134

    Google Scholar 

  • Trectipsattit N and Chulavatnatol M (1982) Effects of ATP. cAMP and pH on the initiation of flagellar movement in demembranated models of rat epididymal spermatozoa. Exp Cell Res 142: 495–499

    Article  Google Scholar 

  • Turner TT and Giles RD (1981) The effects of carnitine, glycerylphosphorylcholine. caffeine. and egg yolk on the motility of rat epididymal spermatozoa. Gamete Res 4: 283–295

    Article  CAS  Google Scholar 

  • Turner TT and Giles RD (1982) The effects of cyclic adenine nucleotides, phosphodiesterase inhibitors, and cauda epididymal fluid on the motility of rat epididymal spermatozoa. J Androl 3: 134–139

    CAS  Google Scholar 

  • Vermouth NT, Carriazo CS, Ponce RH and Bland A (1986) Lactate dehydrogenase-X, malate dehydrogenase and total protein in rat spermatozoa during epididymal transit. Comp Biochem Physiol B83: 381–384

    Article  CAS  Google Scholar 

  • Vijayaraghavan S and Hoskins DD (1985) Forskolin stimulates bovine epididymal sperm motility and cyclic AMP levels. J Cyclic Nucleotide Res 10: 499–510

    CAS  Google Scholar 

  • Vijayaraghavan S, Critchlow IM and Hoskins DD (1985) Evidence for a role of cellular alkalinization in the cyclic adenosine 3′,5′-monophosphate-mediatcd initiation of motility in bovine caput spermatozoa. Biol Reprod 32: 489–500

    Article  PubMed  CAS  Google Scholar 

  • Virtanen I, Badley RA, Paasivuo R and Lehto VP (1984) Distinct cytoskeletal domains revealed in sperm cells. J Cell Biol 99: 1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Voglmayr JK (1975) Metabolic changes in spermatozoa during epididymal transit. In: Handbook of Physiology. Sect 7 Endocrinology, Vol V Male Reproductive System. Eds. DW Hamilton and RO Greep. Amer Physiol Soc Washington DC. pp 437–451

    Google Scholar 

  • Voglmayr JK and Gandhi JS (1978) Survival of ram testicular spermatozoa in vitro: effects of glucose, glucose metabolites, rete testis fluid proteins, selected androgens and phospholipids. Theriogencology 9: 463–478

    Article  CAS  Google Scholar 

  • Voglmayr JK, Scott TW, Setchell BP and Waites GMII (1967) Metabolism of testicular spermatozoa and characteristics of testicular fluid collected from conscious rams. J Reprod Fert 14: 87–99

    Article  CAS  Google Scholar 

  • Voglmayr JK, White IG and Quinn PJ (1969) A comparison of adenosine triphosphatase activity in testicular and ejaculated spermatozoa of the ram. Biol Reprod 1: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Voglmayr JK, Larson LH and White IG (1970) Metabolism of spermatozoa and composition of fluid collected from the rete testis of living bulls. J Reprod Fert 21: 449–460

    Article  CAS  Google Scholar 

  • Voglmayr JK, Musto NA, Saksena SK, Brown-Woodman PDC, Marley PB and White IG (1977) Characteristics of semen collected from the Cauda epididymidis of conscious rams. J Reprod Fert 49: 245–251

    Article  CAS  Google Scholar 

  • Voglmayr JK, White IG and Parks RP (1978) The fertilizing capacity of ram testicualr spermatozoa, freshly collected and after storage in cauda epididymal fluid. Theriogenology 10: 313–321

    Article  PubMed  CAS  Google Scholar 

  • Warren MR (1938) Observations of the uterine fluid of the rat. Am J Physiol 122: 602–608

    Google Scholar 

  • Wasco WM and Orr GA (1984) Function of calmodulin in mammalian sperm: presence of a calmodulin-dependent cyclic nucleotide phosphodiesterase associated with demembranted rat caudal epididymal sperm. Biochem Biophys Res Commun 118: 636–642

    Article  PubMed  CAS  Google Scholar 

  • White IG and Voglmayr JK (1986) ATP-induced reactivation of ram testicular, cauda epididymal, and ejaculated spermatozoa extracted with Triton X-100. Biol Reprod 34: 183–193

    Article  PubMed  CAS  Google Scholar 

  • Williams JA (1970) Origin of transmembrane potentials in non-excitable cells. J Theoret Biol 28: 287–296

    Article  CAS  Google Scholar 

  • Wong PYD and Lee WM (1983) Potassium movement during sodium-induced motility initiation in the rat caudal epididymal spermatozoa. Biol Reprod 28: 206–212

    Article  PubMed  CAS  Google Scholar 

  • Wong PYD and Lee WM (1985) Ionic mechanisms of sperm motility initiation. In: Male Fertility and its Regulation. Eds. TJ Lobl and ESE Hafez, MTP Press Lancaster. pp 411–416

    Chapter  Google Scholar 

  • Wong PYD, Tsang AYF, Lee WM and Li CM (1980) Sccretion of the rat cauda epididymidis. Archs Androl 5: 327–336

    Article  CAS  Google Scholar 

  • Wong PYD, Lee WM and Tsang AYF (1981a) The effects of extracellular sodium on acid release and motility initiation in rat caudal epididymal spermatozoa vitro. Exp Cell Res 131: 97–104

    Article  PubMed  CAS  Google Scholar 

  • Wong PYD, Lee WM and Tsang AYF (1981b) The effects of sodium and amiloridc on the motility of the caudal epididymal spermatozoa of the rat. Experienlia 37: 69–71

    Article  CAS  Google Scholar 

  • Wong PYD, Tsang AYF and Lee WM (1982) Secretion of macromolecules by the rat epididymis. Int J Androl Suppl 5: 34–47

    Article  CAS  Google Scholar 

  • Wright MI, Bradley MP and Forrester IT (1981) Acetylcholinesterase and the maturation of mammalian sperm. Proc U Otago Med Sch 59: 28–29

    CAS  Google Scholar 

  • Wyker R and Howards SS (1977) Micropuncture studies on the motility of rctc testis and epididymal spermatozoa. Fert Sleril 28: 108–112

    CAS  Google Scholar 

  • Yamanaka US and Soderwall AL (1960) Transport of spermatozoa through the female genital tract of hamsters. Fert Steril 11: 470–474

    CAS  Google Scholar 

  • Yasazumi G, Yamaguchi S, Takahashi Y, Nishimura Y, Yamagishi N, Nakai Y, Naito N and Iwashita T (1975) The structural and cytochemical bases for vertebrate and invertebrate sperm motility. In: The Functional Anatomy of the Spermatozoon. Ed. BA Afzelius, Pergamon Press. Oxford, pp 151–159

    Google Scholar 

  • Yeung CH (1984) Effects of cyclic AMP on the motility of mature and immature hamster epididymal spermatozoa studied by reactivation of the demembranated cells. Gamete Res 9: 99–114

    Article  CAS  Google Scholar 

  • Young LG and Nelson L (1968) Viscometric analysis of the contractile proteins of mammalian spermatozoa. Exp Cell Res 51: 34–44

    Article  PubMed  CAS  Google Scholar 

  • Young LG and Nelson L (1969) Divalent cation activation of flagellar ATP-phosphohydrolase from bull sperm. J Cell Physiol 74: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Young LG and Smithwick EB (1975a) Characterization of the ATP-phosphohydrolase activity of bovine spermatozoa flagellar extracts. J Cell Physiol 85: 143–150

    Article  PubMed  CAS  Google Scholar 

  • Young LG and Smithwick EB (1975b) Extraction and ATP-phosphohydrolase activity from epididymal bull sperm and ultrastructure of flagellar degradation. Exp Cell Res 90: 223–236

    Article  PubMed  CAS  Google Scholar 

  • Young LG and Smithwick EB (1976) Effects of mechanical and chemical disruption on the ATP-phosphohydrolase activity and ultrastructure of sperm flagella. Exp Cell Res 102: 179–190

    Article  PubMed  CAS  Google Scholar 

  • Young LG and Smithwick EB (1983) Studies on the flagellar ATPase of bull spermatozoa: extraction and characterization. J exp Zool 226: 459–466

    Article  PubMed  CAS  Google Scholar 

  • Young WC (1931) A study of the function of the epididymis. III. Functional changes undergone by spermatozoa during their passage through the epididymis and vas deferens in the guinea pig. J exp Biol 8: 151–162

    Google Scholar 

  • Zamboni L (1972) Fertilization in the mouse. In: Biology of Mammalian Fertilization and Implantation. Eds KS Moghissi and ESE Hafez. Charles C Tomas. Springfield Illinois, pp 213–262

    Google Scholar 

  • Zimmerman KJ, Crabo BG, Moore R, Weisberg S, Dicbel FC and Graham EF (1979) Movements of sodium and potassium into epididymal boar spermatozoa. Biol Reprod 21: 173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooper, T.G. (1986). Sperm Motility. In: The Epididymis, Sperm Maturation and Fertilisation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71471-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71471-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71473-3

  • Online ISBN: 978-3-642-71471-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics