Skip to main content

Resorption and Secretion of Ions by the Epididymis

  • Chapter
The Epididymis, Sperm Maturation and Fertilisation
  • 158 Accesses

Abstract

Techniques of micropuncture and electron microprobe analysis have located ions within different compartments of the epididymis. There are increasing intraluminal sodium and potassium concentrations distally in tissue slices from the mouse epididymis (Hamilton et al., 1976). but these measurements would include the contributions from the increasing numbers of sperm cells. In other species during maturation in the epididymis the concentration of sodium ions within spermatozoa decline in parallel with removal of Na+ from the surrounding fluid and intracellular K+ in sperm is always maintained above that of epididymal fluid (Table 12). Ion concentrations in epididymal fluid differ markedly from blood or testicular fluid and regional differences are present (see Table 13); most noticeable are a loss of Na+ and an increase in K+ with high phosphate concentrations in the rat (Hinton et al., 1980a) and Mg2+ in the rabbit (Jones, 1978). Despite increased concentrations, a net resorption of potassium along the length of the duct is observed when the resorption of fluid is taken into account (Turner, 1984). pH decreases sharply between the testis and the caput epididymis of the rat (Levine and Kelly, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashraf M, Peterson RN and Russell LD (1982) Activity and localization of cation-dependent ATPase on the plasma membranes of boar spematozoa. Biochem Biophys Res Commun 107: 1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Atmar VJ, Kuehn GD and Casillas ER (1981) A polyamine-dependent protein kinase from bovine epididymal spermatozoa. J Biol Chem 256: 8275–8278

    PubMed  CAS  Google Scholar 

  • Au CL and Wong PYD (1980) Bicarbonate transport in the perfused rat cauda epididymidis. J Physiol 301: 29 p

    Google Scholar 

  • Au CL, Ngai HK, Yeung CH and Wong PYD (1978) Effect of adrenalectomy and hormone replacement on sodium and water transport in the perfused rat cauda epididymis. J Endocr 77:265–266

    Article  PubMed  CAS  Google Scholar 

  • Babcock DF, First NL and Lardy HA (1976) Action of ionophore A23187 at the cellular level. Separation of effects at the plasma and mitochondrial membranes. J Biol Chcm 251: 3881–3886

    PubMed  CAS  Google Scholar 

  • Babcock DF, Stamerjohn DS and Hutchison T (1978) Calcium redistribution in individual sperm cells correlated with ionophore activity on motility. J exp Zool 204: 391–400

    Article  PubMed  CAS  Google Scholar 

  • Babcock DF, Singh JP and Lardy HA (1979) Alteration of membrane permeability to calcium ions during maturation of bovine spermatozoa. Develop Biol 69: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Back DJ, Glover TD. Shcnton JC and Boyd GP (1975) The effect of a-chlorohydrin on the composition of rat and rabbit epididymal plasma. A possible explanation of spccics difference. J Reprod Fert 45: 117–128

    Article  CAS  Google Scholar 

  • Back DJ, Glover TD, Shcnton JC and Boyd CP (1977) Some effects of cyprotcronc acetate on the reproductive physiology of the male rat. J Reprod Fert 49: 237–243

    Article  CAS  Google Scholar 

  • Bamberg E, Weiser M and Dcsscr H (1975) Polyamincs in bovine epididymal spermatozoa. J Reprod Fert 45: 363–365

    Article  CAS  Google Scholar 

  • Benedict RC, Schumakcr VN and Davis RE (1967) The buoyant density of bovine and rabbit spermatozoa. J Reprod Fert 13: 237–249

    Article  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol triphosphate and diacyl glycerol as sccond messengers. Biochem J 220: 345–360

    PubMed  CAS  Google Scholar 

  • Bishop DW and Matthews HP (1952) The significance of intravas pH in relation to sperm motility. Science 115: 209–211

    Article  PubMed  CAS  Google Scholar 

  • Bowen RE, Graham EE and Crabo B (1973) A technique for collecting epididymal spcrmatzoa and fluids front the boar virtually free from accessory sex gland secretions. J Reprod Fert 33: 319–322

    Article  Google Scholar 

  • Bradley MP. van Eerten MTW and Forrester IT (1979) The energy-dependent uptake of Ca2+ by mammalian spermatozoa. Proc U Otago Med Sch 57: 5–7

    CAS  Google Scholar 

  • Brandes D (1974) Fine structure and cytochemistry of male sex accessory organs. In: Male Accessory Sex Organs. Structure and function in mammals. Ed D Brandes, Acad Press, New York, pp 17–113

    Google Scholar 

  • Brooks DE (1976) Control of glycolytic enzvmes by androgens in the rat epididymis. J Endocr 71: 355–365

    Article  PubMed  CAS  Google Scholar 

  • Burgos MH (1974) Biochemical and functional properties related to sperm metabolism and fertility. In: Male Accessory Organs. Structure and Function in Mammals. Eds D Brandes. Acad Press, New York, pp 151–160

    Google Scholar 

  • Carr DW and Acott TS (1984) Inhibition of bovine spermatozoa by cauda epididymal fluid: 1. 169 Studies of a sperm motility quiescence factor. Biol Reprod 30: 913–925

    Article  PubMed  CAS  Google Scholar 

  • Carr DW, Usselman MC and Acott TS (1985) Effects of pH. lactate, and viscoclastic drag on sperm motility - a spccies comparison. Biol Reprod 33: 588–595

    Article  PubMed  CAS  Google Scholar 

  • Cascieri M. Amann RP and Hammerstedt RH (1976) Adenine nucleotide changcs at initiation of bull sperm motility. J Biol Chcm 251: 787–793

    PubMed  CAS  Google Scholar 

  • Casillas ER. Elder CM and Hoskins DD (1980) Adenylate cyclasc activity of bovine spermatozoa during maturation in the epididymis and the activation of sperm particulate adenylate cyclase by OTP and polyamincs. J Rcprod Fert 59: 297–302

    Article  CAS  Google Scholar 

  • Cheung YM, Hwang JC and Wong PYD (1978) Membrane potentials of epithelial cells in the epididymis. Ionic and castration effects. Comp Biochcm Physiol 59: 403–407

    Article  Google Scholar 

  • Chulavatnatol M and Yindepit S (1976) Changes in surface ATPase of rat spermatozoa in transit from the caput to the cauda epididymidis. J Rcprod Fert 48: 91–97

    Article  CAS  Google Scholar 

  • Chulavatnatol M, Eksittikul T and Toowicharanont P (1978) Control of epididymal sperm motility: an approach to male fertility regulation. Int J Androl Suppl 2: 629–638

    Article  CAS  Google Scholar 

  • Clarke CH and Shankcl DM (1975) Antimutagenesis in microbial systems. Bactcriol Rev 39: 33–53

    CAS  Google Scholar 

  • Cohen JP. Hoffer AP and Rosen S (1976) Carbonic anhydrase localization in the epididymis and testis of the rat: histochemical and biochemical analysis. Biol Rcprod 14: 339–346

    Article  CAS  Google Scholar 

  • Cooper TG and Ycung CH (1980) Epithelial structure of the rat cauda epididymidis after luminal perfusion. Int J Androl 3: 361–374

    Google Scholar 

  • Crabo B (1967) Chemophysiological aspccts of epididymal function. Nord Med 78: 1009–1040

    Google Scholar 

  • Fleming AD and Armstrong DT (1985) Effects of polyamines upon capacitation and fertilization in the guinea pig. J exp Zool 233: 93–100

    Article  PubMed  CAS  Google Scholar 

  • Garbers DL. Wakayabashi T and Rccd. PW (1970) Enzyme profile of the cytoplasmic droplet rom bovine epididymal spermatozoa. Biol Rcprod 3: 327–337

    CAS  Google Scholar 

  • Gordon M (1973) Localization of phosphatase activity on the membranes of the mammalian sperm head. J exp Zool 185: 111–120

    Article  PubMed  CAS  Google Scholar 

  • Gordon M (1977) Cytochemical analysis of the membranes of the mammalian sperm head. In: Male Reproductive System. Fine Structure Analysis by Scanning and Transmission Electron Microscopy. Eds RD Yates and M Gordon. Abacus Press. Tunbridgc Wells, pp 15–33

    Google Scholar 

  • Gordon M and Barmetl RJ (1967) Kmc structural cytochemical localizations of phosphatase activities of rat and guinea pig. Exp Cell Res 48: 395–412

    Article  PubMed  CAS  Google Scholar 

  • Gordon M and Dandekar PV (1977) Fine-structural localization of phosphatase activity on the plasma membrane of the rabbit sperm head. J Reprod Fert 49: 155–156

    Article  CAS  Google Scholar 

  • Gordon M, Dandekar PV and Eager PR (1978) The identification of phosphatases on the membranes of guinea pig sperm. Anat Ree 191: 123–134

    Article  CAS  Google Scholar 

  • Goyns MH (1982) The role of polyamines in animal cell physiology. J Theoret Biol 95: 577–589

    Article  Google Scholar 

  • Gunn SA and Gould TC (1975) Vasculature of the testes and adnexia. In: Handbook of Physiology. Section VII Endocrinology, Volume 5 Male Reproductive System. Eds DW Hamilton and RO Greep. American Physiological Society. Washington DC. pp 117–142

    Google Scholar 

  • Ham RG (1964) Putrcscine and related amines as growth factors for a mammalian cell line. Biochem Biophys Res Commun 14: 34–38

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DW, Olson GE and Beeuwkes R (1976) Epididymal physiology and sperm maturation. In: Progrocss in Reproductive Biology Vol 1. Ed PO Hubinot, S Karger. Basel, pp 62–73

    Google Scholar 

  • Harrison GA (1931) Spermine in human tissues. Biochem J 25: 1885–1892

    PubMed  CAS  Google Scholar 

  • Heffner LJ and Storey BT (1981) The role of calcium in maintaining motility in mouse spermatozoa. J exp Zool 218: 427–434

    Article  PubMed  CAS  Google Scholar 

  • Hinton BT and Setchell BP (1980) Concentrations of glycerophosphocholine, phosphocholine and free inorganic phosphate in the luminal fluid of the rat testis and epididymis. J Reprod Fert 58: 401–406

    Article  CAS  Google Scholar 

  • Hohlbrugger G (1980) A micropuncture study of transepithelial water reabsorption in rat ductuli efterentes. Fert Steril 34: 50–54

    CAS  Google Scholar 

  • Hohlbrugger G and Pfaller K (1983) Post-vasectomy impairment of transcpithclial water reabsorption in the initial segment of the epididymis. Archs Androl 11: 265–270

    Article  CAS  Google Scholar 

  • Hoskins DD. Acott TS. Critzchlow L and Vijayaraghavan S (1983) Studies on the roles of cyclic AMP and calcium in the development of bovine sperm motility. J Submicroscop Cytol 15: 21–27

    CAS  Google Scholar 

  • Jenkins AD, Lechene CP and Howards SS (1978) The effect of estrogen on the concentration of seven elements in the intraluminal fluids of the seminiferous tubules, rete testis, and epididymides. Fert Steril 30: 732–733

    Google Scholar 

  • Jenkins AD. Lechene CP and Howards SS (1983a) The effect of spironolactone on the elemental composition of the intraluminal fluids of the seminiferous tubules, rete testis and epididymis of rat. J Urol 129: 851–854

    PubMed  CAS  Google Scholar 

  • Jenkins AD, Lechene CP and Howards SS (1983b) The effect of estrogen administration in vivo on the elemental composition of intraluminal fluids of the seminiferous tubules, rctc testis and epididymis of the rat. J Androl 4: 272–275

    PubMed  CAS  Google Scholar 

  • Jones R (1974) Absorption and secretion in the cauda epididymidis of the rabbit and the effects of degenerating spermatozoa on epididymal plasma after castration. J Endocr 63: 157–165

    Article  PubMed  CAS  Google Scholar 

  • Jones R (1977) Effects of testosterone, testosterone metabolites and anti-androgens on the function of the male accessory glands in the rabbit and rat. J Endocr 74: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Jones R (1978) Comparative biochemistry of mammalian epididymal plasma. Comp Biochem Biophys 61B: 365–370

    Article  CAS  Google Scholar 

  • Jones R and Glover TD (1973) The effects of castration on the composition of rabbit epididymal plasma. J Rcprod Pert 34: 405–411

    CAS  Google Scholar 

  • Jones R and Glover TD (1975) Interrelationships between spermatozoa, the epididymis and epididymal plasma. In: The Biology of the Male Gamete. Eds JG Duckett and PM Racey. Suppl No 1 to the Biol J Unnaen Soc 7: 367–384

    Google Scholar 

  • Kidroni G, Har-Nir R. Menczel J. Frutkoff IW. Palti Z and Ron M (1983) Vitamin D3 metabolites in rat epididymis: high 24,25-dihydroxyvitamin D3 levels in the cauda region. Biochem Biophys Acta 113: 982–989

    CAS  Google Scholar 

  • Lavon U. Volcani R. Amir D and Danon D (1966) The specific gravity of bull spermatozoa from different parts of the reproductive tract. J Rcprod Pert 12: 597–599

    Article  CAS  Google Scholar 

  • Lee WM, Tsang AYF and Wong PYD (1981) Effects of divalent and lanthanide ions on motility initiation in rat caudal epididymal spermatozoa. Brit J Pharmac 73: 633–638

    CAS  Google Scholar 

  • Levin RM. Amsterdam JD, Winokur A and Wein AJ (1981) Effects of psychotropic drugs on human sperm motility. Pert Steril 36: 503–506

    CAS  Google Scholar 

  • Levine N and Kelly H (1978) Measurement of pH in the rat epididymis in vivo. J Rcprod Pert 52: 333–335

    Article  CAS  Google Scholar 

  • Lindahl PE (1973) Activators of the ATP-depcndcnt surface reaction in the apical cell cell membrane of the bull-sperm head, causing hcad-to-hcad association. Exp Cell Res 81: 413–431

    Article  PubMed  CAS  Google Scholar 

  • Lindahl PP (1974) Nucleotide specificity of the ATP-depcndcnt surface reaction of the acrosomal region of the bull sperm head. Exp Cell Res 87: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Lindahl PP and Kihlstrom JE (1952) Alterations in specific gravity during the ripening of bull spermatozoa. J Dairy Sei 35: 393–402

    Article  Google Scholar 

  • Lockwood DH and East LE (1974) Studies on the insulin-like actions of polyamineson lipid and glucose metabolism in adipose tissue cells. J Biol Chem 249: 7717–7722

    PubMed  CAS  Google Scholar 

  • MacIndoe JH and Turkington RW (1973) Hormonal regulation of spermidine formation during spermatogenesis in the rat. Endocrinology 92: 595–605

    Article  PubMed  CAS  Google Scholar 

  • Majumdcr GC, Maclndoe JH and Turkington RW (1974) Hormonal Control of ornithine decarboxylase and s-adenosyl-L-methionine decarboxylase during development of the rat epididymis. Life Sci 15: 45–55

    Article  Google Scholar 

  • Lukac J. Pribanic M and Karen E (1976) Calcium-binding protein in bull seminal vesicle secretion and seminal plasma. J Reprod Pert 48: 77–81

    Article  CAS  Google Scholar 

  • Matsuzaki S. Iiaman K. Imai K and Matsuhura K (1982) Occurrence in high concentrations of N-acctylspcrmidine and sym-homospcrmidmc in the hamster epididymis. Biochem Biophys Res Commun 107: 307–313

    Article  PubMed  CAS  Google Scholar 

  • McGradev AV and Nelson L (1974) Effect of calcium on bull spermatozoan membrane potential. Exp Cell Res 87: 398–400

    Article  Google Scholar 

  • McLeod J. Swan RC and Aitken GA (1949) Lithium: its effect on human spermatozoa, rat testicular tissue and upon rats in vivo. Am J Physiol 157: 177–183

    Google Scholar 

  • Morton BE, Sagadraca R and Fräser C (1978) Sperm motility within the mammalian epididymis: species variation and correlation with free calcium levels in epididymal plasma. Pert Steril 29: 695–698

    CAS  Google Scholar 

  • Mrsny RJ and Meizel S (1983) Initial evidence for the modification of hamster sperm Na+. K+-ATPase activity by cyclic nucleotide-mediated processes. Biochem Biophys Res Commun 112: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Paonessa G, Mctafora S, Tajana G, Abrescia P. de Santis A. Gentile V and Porta R (1984) Transglutaminase-mediated modifications of the rat sperm surface in vitro. Science 226: 852–825

    Article  PubMed  CAS  Google Scholar 

  • Parrish RF and Polakoski KL (1977) Effect of polyamines on the activity of acrosin and the activation of proacrosin. Biol Reprod 17: 417–422

    Article  PubMed  CAS  Google Scholar 

  • Pulkkinen P. Sinervirta R and Janne J (1975) Modification of the metabolism of rat cpididymal spermatozoa by spermine. Biochem Biophys Res Commun 67: 714–722

    Article  PubMed  CAS  Google Scholar 

  • Pulkkinen P. Piik K. Koso P and Janne J (1978) Effect of polyamines and their oxidized derivatives on the metabolism of rat cpididymal spermatozoa. Acta Endocr 87: 845–854

    PubMed  CAS  Google Scholar 

  • Rasweiler JJ and Bedford JM (1982) Biology of the scrotum.III. Effects of abdominal temperature upon the epithelial cells of the rat cauda epididymidis. Biol Reprod 26: 691–705

    Article  PubMed  Google Scholar 

  • Reed PW and Takahashi Y (1973) A high activity divalent cation ATPase from the distal, caudal epididymis of bulls. Biol Reprod 9: 46–56

    PubMed  CAS  Google Scholar 

  • Rikmenspoel R (1984) Movements and active moments of bull sperm flagclla as a function of temperature and viscosity. J exp Biol 108: 205–230

    PubMed  CAS  Google Scholar 

  • Rikmenspoel R. Jacklett AC. Orris SE and Lindcmann CB (1973) Control of bull sperm motility. Effects of viscosity, KCN and thiourea. J Mechanochem Cell Motility 2: 7–24

    CAS  Google Scholar 

  • Rogers BJ and Yanagimachi R (1976) Competitive eflect of magnesium on the calcium-dependent acrosome reaction in guinea pig sperm. Biol Reprod 15: 614–619

    Article  PubMed  CAS  Google Scholar 

  • Rogers BJ. Ueno M and Yanagimachi R (1981) Fertilization by guinea pig spermatozoa requires potassium ions. Biol Reprod 25: 639–648

    Article  PubMed  CAS  Google Scholar 

  • Rufo GA, Singh JP, Bahcock DF and Lardy HA (1982) Purification and characterization of a calcium transport inhibitor protein from bovine seminal plasma. J Biol Chem 257: 4627–4632

    PubMed  CAS  Google Scholar 

  • Rufo GA. Schoff PK and Lardy HA (1984) Regulation of calcium content in bovine spermato-zoa. J Biol Chem 259: 2547–2552

    PubMed  CAS  Google Scholar 

  • Saling PM. Storey BT and Wolf DP (1978) Calcium-dependent binding of mouse cpididymal spermatozoa tzo the zona pellucida. Develop Biol 65: 515–525

    Article  PubMed  CAS  Google Scholar 

  • Salisbury GW (1956) The function of the epididymis of the bull. I. A theory for the activation of spermatozoan motility. Tijdschr. Diergeneesk 87: 616–623

    Google Scholar 

  • Shah GV and Sheth AR (1978) Inhibition of phosphodiesterase activity of human spermatozoa by spermine. Experientia 34: 980–981

    Article  PubMed  CAS  Google Scholar 

  • Shah GV. Sheth AR. Mugatwala PP and Rao SS (1975) Effect of spermine on adenyl cyclase activity of spermatozoa. Experientia 31: 631–632

    Article  PubMed  CAS  Google Scholar 

  • Singh JP. Babcock DF and Lardy HA (1978) Increased calcium -ion influx is a component is capacitation of spermatozoa. Biochem J 172: 549–556

    PubMed  CAS  Google Scholar 

  • Stanger JD and Quinn P (1982) Effect of polyamines on fertilization of mouse ova in vitro. J expZool 220: 377–380

    CAS  Google Scholar 

  • Stewart TA and Forrester IT (1979) Acctylcholinc-induccd calcium movements in hypotonically washed ram spermatozoa. Biol Reprod 21: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Storey BT (1975) Energy metabolism of spermatozoa. IV. Effcct of calcium on respiration of mature cpididymal sperm of the rabbit. Biol Reprod 13: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Storey BT and Kcyhani E (1973) Interaction of calcium ion with the mitochondrion of rabbit spermatozoa. FEBS Letts 37: 33–36

    Article  CAS  Google Scholar 

  • Storey BT and Kcyhani F. (1974b) Energy metabolism of spermatozoa: III. Energy-linked uptake of calcium ion by the mitochondria of rabbit epididymal spermatozoa. Fert Steril 25: 976–984

    CAS  Google Scholar 

  • Svejnohova D. Janousck I and Suva J (1980) Study of lithium levels in the scrum and genital organs of male rats. Activitis Nervosa Superior 22: 178–180

    Google Scholar 

  • Tabor CW and Rosenthal SM (1956) Pharmacology of spermine and spermidine. Some effects on animals and bacteria. J Pharm exp Therap 116: 139–155

    CAS  Google Scholar 

  • Tabor H and Tabor CW (1964) Spermidine, spermine, and related amines. Pharm Rev 16: 245–300

    PubMed  CAS  Google Scholar 

  • Tabor II and Tabor CW (1972) Biosynthesis and metabolism of 1.4-diaminobutane. spermidine. spermine and related amines. Adv Enz 36: 213–268

    Google Scholar 

  • Tabor CW and Tabor H (1976) 1.4-diamobutaine (putrescine). spermidine and spermine. Ann Rev Biochem 45:285–306

    Article  PubMed  CAS  Google Scholar 

  • Tabor CW and Tabor H (1984) Polyamincs. Ann Rev Biochcm 53: 749–790

    Article  PubMed  CAS  Google Scholar 

  • Turner IT (1984) Resorption versus secretion in the rat epididymis. J Reprod Pert 72: 509–514

    Article  CAS  Google Scholar 

  • Turner TT and Cesarini DM (1983) The ability of the rat epididymis to concentrate spermatozoa. Responsiveness to aldosterone. J Androl 4: 197–202

    PubMed  CAS  Google Scholar 

  • Uesugi S and Yamazoc S (1966) Presence of sodium-potassium-stimulated ATPase in boar epididymal spermatozoa. Nature (Lond) 209: 403

    Article  CAS  Google Scholar 

  • van Eerten MTW. Bradley MP and Forrester IT (1979) Ca2+ transport across the plasma and mitochondrial membranes of mammalian spermatozoa 11th Int Congr Biochem. Toronto (abst)

    Google Scholar 

  • Voglmayr JK and Gandhi JS (1978) Survival of ram testicular spermatozoa in vitro: effects of glucose, glucose metabolites, rete testis fluid-proteins, selected androgens and phospholipids. Theriogenology 9: 463–478

    Article  CAS  Google Scholar 

  • Voglmayr JK. White IG and Quinn PJ (1969) A comparison of adenosine triphosphatase activity in testicular and ejaculated spermatozoa of the ram. Biol Reprod 1: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Walters MR. Hunziker W and Norman AW (1982) 1.25-dihydroxyvitamin D3 receptors: exchange assay and presence in reproductive tissues. In: Vitamin D. Chemical. Biochemical and linical Endocrinolgy of Calcium Metabolism. Walter dc Gruytcr and Co. Berlin, pp 91–93

    Google Scholar 

  • Walters MR. Cunco DL and Jamieson AP (1983) Possible significance of new target tissues for 1.25-dihydroxyvitamin D3. J Steroid Biochem 19: 913–920

    Article  PubMed  CAS  Google Scholar 

  • White IG (1954) The effcct of some seminal constituents and related substance on diluted mammalian spermatozoa. Aust J Biol Sci 7: 379–390

    PubMed  CAS  Google Scholar 

  • Williams JA (1970) Origin of transmembrane potentials in non-excitable cells. J Theoret Biol 28: 287–296

    Article  CAS  Google Scholar 

  • Williams-Ashman HG and Lockwood DM (1971) Role of polyamines in reproductive physiology and sex hormone action. Ann NY Acad Sci 171: 882–894

    Article  Google Scholar 

  • Working PK and Meizel S (1982) Preliminary charactrization of a Mg2+-ATPase in hamster sperm head membranes. Biochem Biophys Res Commun 104: 1060–1065

    Article  PubMed  CAS  Google Scholar 

  • Wong PYD and Lee WM (1982) Effects of spironolactone (aldosterone antagonist) on electrolyte and water content of the cauda cpididymidis and fertility of male rats. Biol Reprod 27: 771–777

    Article  PubMed  CAS  Google Scholar 

  • Wong PYD and Yeung CI I (1976) Inhibition by amiloride of sodium-dependent fluid resorption in the rat isolated caudal epididymis. Brit J Pharm 58: 529–531

    CAS  Google Scholar 

  • Wong PYD and Yeung CI I (1977a) Fluid reabsorption in the isolated duct of the rat cauda epididyniidis. J Reprod Fcrt 49: 77–81

    Article  CAS  Google Scholar 

  • Wong PYD and Yeung CH (1977b) Hormonal regulation of fluid resorption in isolated rat cauda epididymidis. Endocrinology 101: 1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Wong PYD and Yeung CH (1978) Absorptive and secretory functions of the perfused rat cauda epididymidis. J Physiol 275: 13–26

    PubMed  CAS  Google Scholar 

  • Wong PYD. Yeung CH and Ngai HK (1977) Effect of at-chlorohydrin on transport processes in perfused rat cauda epididymidis. Contraception 16: 637–644

    Article  CAS  Google Scholar 

  • Wong PYD, Au CL and Ngai HK (1978) Electrolyte and water transport in rat epididymis. Its possible role in sperm maturation. Int J Androl Suppl 5: 608–628

    Article  Google Scholar 

  • Wong PYD. Au CI. and Ngai HK (1979) Some characteristics of salt and water transport in the rat epididymis. In: The Spermatozoon. Eds DW Fawcett and JM Bedford. Urban and Schwarzenberg, Baltimore, pp 57–63

    Google Scholar 

  • Wong PYD. Au CL and Ngai HK (1980a) Effects of 6-chloro-6-deoxygIucosc on electrolyte and water transport in the epididymis and fertility of male rats. Int J Androl 3: 82–86

    Article  PubMed  CAS  Google Scholar 

  • Wong PYD, Au CL and Ngai HK (1980b) The isolated duct oi the rat cauda epididymidis as a model for isosmotic transport studies. Jap J Physiol 30: 1–15

    Article  CAS  Google Scholar 

  • Wong PYD, Tsang AYF, Lee WM and Li CM (1980c) Secretion of the rat cauda cpididvmidis. Archs Androl 5: 327–336

    Article  CAS  Google Scholar 

  • Wong PYD, Tsang AYF and Lee WM (1982a) Secretion of macromolecules by the rat epididymis. Int J Androl Suppl 5:34–

    Article  CAS  Google Scholar 

  • Wong PYD. Au C and Bedford JM (1982b) Biology of the scrotum. II. Suppression by abdominal temperature of transepithelial ion and water transport in the cauda epididymidis. Biol Reprod 26: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Wong YC, Wong PYD and Yeung CH (1978) Ultrastructural correlation of water resorption in isolated cauda epididymides. Experientia 34: 485–487

    Article  PubMed  CAS  Google Scholar 

  • Wu YW, Xie YK and Yuan D (submitted) Electrophysiological and ultrastructural studies of the blood-epididymis barrier of the rat. Int J Androl

    Google Scholar 

  • Yanagimachi R and Usui N (1974) Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res 89:161 –174

    Article  PubMed  CAS  Google Scholar 

  • Yeung CH and Cooper TG (1982) Ultrastructure of the perfused rat epididymis: effect of luminal sodium ion concentration. Cell Tiss Res 226: 407–425

    Article  CAS  Google Scholar 

  • Zimmerman KJ, Crabo BG, Moore R, Weisberg S, Diebel EC and Graham EE (1979) Movements of sodium and potassium into epididymal boar spermatozoa. Biol Reprod 21: 173–179

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooper, T.G. (1986). Resorption and Secretion of Ions by the Epididymis. In: The Epididymis, Sperm Maturation and Fertilisation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71471-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71471-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71473-3

  • Online ISBN: 978-3-642-71471-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics