Skip to main content

Ultrastructure of Regulatory Neuroendocrine Neurons and Functionally Related Structures

  • Conference paper
Morphology of Hypothalamus and Its Connections

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 7))

Abstract

Until five years ago, the concept of hypothalamic neurohormones (Bargmann 1949, 1966; Scharrer 1936; Scharrer and Scharrer 1954) seemed to be rather simple and plausible, and was based on their function as regulatory or effectory hormones (Vollrath 1974).

The work on which this review is based was supported by the Deutsche Forschungsgemeinschaft (Grant Nr. 569/5-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Engler D, Molitch ME, Bollinger-Gruber J, Reichlin S (1985) Vasoactive intestinal peptide is a physiological mediator of prolactin release in the rat. Endocrinology 116:1383–1390

    PubMed  CAS  Google Scholar 

  • Adams JH, Daniel PM, Prichard MML (1964) Distribution of hypophysial blood in the anterior lobe of the pituitary gland. Endocrinology 75:120–126

    PubMed  CAS  Google Scholar 

  • Adams JH, Daniel PM, Prichard MML (1969) The blood supply of the pituitary gland of the ferret with special reference to infarction after stalk section. J Anat 104:209–225

    PubMed  CAS  Google Scholar 

  • Ambach G, Palkovits M, Szentágothai J (1976) Blood supply of the rat hypothalamus. IV. Retrochiasmatic area, median eminence, arcuate nucleus. Acta Morphol Hung 24:93–119

    CAS  Google Scholar 

  • Ambach G, Kivovics P, Palkovits M (1978) The arterial and venous blood supply of the preoptic region in the rat. Acta Morphol Hung 26:21–41

    CAS  Google Scholar 

  • Anhut H, Knepel W, Holland A, Meyer DK (1982) α-Endorphin release by angiotensin II: studies on the mechanism of action. Regul Pept 4:83–90

    PubMed  CAS  Google Scholar 

  • Baertschi AJ, Vallet P, Baumann JB, Girard J (1980) Neural lobe of pituitary modulates corticotropin release in the rat. Endocrinology 106:878–882

    PubMed  CAS  Google Scholar 

  • Bai FL, Yamano M, Inagaki S, Shiosaka S, Yamazoe M, Shibasaki T, Ling N, Tachibana S, Hamaoka T, Tohyama M, Shiotani Y (1984) Distribution of neuropeptides in the hypothalamo-hypophyseal system in the rat: an immunohistochemical observation. Cell Mol Biol 30:437–452

    PubMed  CAS  Google Scholar 

  • Bakhit C, Koda L, Benoit R, Morrison JH, Bloom FE (1984) Evidence for selective release of somatostatin-14 and somatostatin-28(1–12) from rat hypothalamus. J Neurosci 4:411–419

    PubMed  CAS  Google Scholar 

  • Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z Zellforsch Mikroskop Anat 34:610–634

    CAS  Google Scholar 

  • Bargmann W (1966) Neurosecretion. Int Rev Cytol 19:183–201

    PubMed  CAS  Google Scholar 

  • Barry J (1979) Immunohistochemistry of luteinizing hormone-releasing hormone-producing neurons of the vertebrates. Int Rev Cytol 60:179–221

    PubMed  CAS  Google Scholar 

  • Beaumont A (1983) Putative peptide neurotransmitters: the opioid peptides. Int Rev Exp Pathol 25:279–298

    PubMed  CAS  Google Scholar 

  • Beauvillain JC, Tramu G, Dubois MP (1981) Ultrastructural immunocytochemical evidence of the presence of a peptide related to ACTH in granules of LHRH nerve terminals in the median eminence of the guinea pig. Cell Tissue Res 218:1–6

    PubMed  CAS  Google Scholar 

  • Beauvillain JC, Tramu G, Garaud JC (1984) Coexistence of substances related to enkephalin and somatostatin in granules of the guinea-pig median eminence: demonstration by use of colloidal gold immunocytochemical methods. Brain Res 301:389–393

    PubMed  CAS  Google Scholar 

  • Bloom FE, Battenberg ELF, Shibasaki T, Benoit R, Ling N, Guillemin R (1980) Localization of y-melanocyte stimulating hormone (γMSH) immunoreactivity in rat brain and pituitary. Regul Pept 1:205–222

    PubMed  CAS  Google Scholar 

  • Bloom FE, Battenberg ELF, Rivier J, Vale W (1982) Corticotropin releasing factor (CRF): immunoreactive neurones and fibres in rat. Regul Pept 4:43–48

    PubMed  CAS  Google Scholar 

  • Bogdanove EM (1963) Direct gonad-pituitary feedback: an analysis of effects of intracranial estrogenic depots on gonadotrophin secretion. Endocrinology 73:696–712

    PubMed  CAS  Google Scholar 

  • Böhlen P, Brazeau P, Benoit R, Ling N, Esch F, Guillemin R (1980) Isolation and amino acid composition of two somatostatin-like peptides from ovine hypothalamus: somatostatin-28 and somatostatin-25. Biochem Biophys Res Commun 96:725–734

    PubMed  Google Scholar 

  • Brightman MW, Prescott L, Reese TS (1975) Intercellular junctions of special ependyma. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-endocrine interaction II. The ventricular system in neuroendocrine mechanisms. Karger, Basel, pp 146–165

    Google Scholar 

  • Brown M, Rivier J, Vale W (1981) Somatostatin-28: selective action on the pancreatic β-cell and brain. Endocrinology 108:2391–2393

    PubMed  CAS  Google Scholar 

  • Brownstein MJ (1985) Peptide processing: an overview. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic, New York, pp 105–112

    Google Scholar 

  • Brownstein MJ, Russell JT, Gainer H (1982) Biosynthesis of posterior pituitary hormones. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology 7. Raven, New York, pp 31–43

    Google Scholar 

  • Carrillo AJ, Pool TB, Sharp ZD (1985) Vasoactive intestinal peptide increases prolactin messenger ribonucleuc acid content in GH3 cells. Endocrinology 116:202–206

    PubMed  CAS  Google Scholar 

  • Charpenet G, Patel YC (1985) Characterization of tissue and releasable molecular forms of somatostatin-28(1–12)-like immunoreactivity in rat median eminence. Endocrinology 116:1863–1868

    PubMed  CAS  Google Scholar 

  • Cheung CY (1984) Does β-endorphin modulate basal and dopamine-inhibited prolactin release by an action at the anterior pituitary? Neuroendocrinology 39:489–495

    PubMed  CAS  Google Scholar 

  • Chihara K, Arimura A, Chihara M, Schally AV (1978) Studies on the mechanism of growth hormone and thyrotropin responses to somatostatin antiserum in anesthetized rats. Endocrinology 103:1916–1923

    PubMed  CAS  Google Scholar 

  • Choy VJ, Watkins WB (1977) Immunohistochemical localization of thyrotropin-releasing factor in the rat median eminence. Cell Tissue Tes 177:371–374

    CAS  Google Scholar 

  • Curtis A, Fink G (1983) A high molecular weight precursor of luteinizing hormone releasing hormone from rat hypothalamus. Endocrinology 112:390–392

    PubMed  CAS  Google Scholar 

  • Daniel PM (1966) The anatomy of the hypothalamus and pituitary gland. In: Martini L, Ganong WF (eds) Neuroendocrinology 1. Academic, New York, pp 15–80

    Google Scholar 

  • Denef C, Schramme C, Baes M (1985) Stimulation of growth hormone release by vasoactive intestinal peptide and peptide PHI in rat anterior pituitary reaggregates. Neuroendocrinology 40:88–91

    PubMed  CAS  Google Scholar 

  • De Souza EB, Perrin MH, Whitehouse PJ, Rivier J, Vale W, Kuhar MJ (1985) Corticotropin-releasing factor receptors in human pituitary gland: autoradiographic localization. Neuroendocrinology 40:419–422

    PubMed  Google Scholar 

  • Duvernoy H (1972) The vascular architecture of the median eminence. In: Knigge KM, Scott DE, Weindl A (eds) Brain-endocrine interaction. Median eminence: structure and function. Karger, Basel, pp 79–108

    Google Scholar 

  • Edvinsson L (1985) Functional role of perivascular peptides in the control of cerebral circulation. Trends Neuro Sci 8:126–131

    CAS  Google Scholar 

  • Emson PC, Goeder M, Benton H, St.-Pierre S, Rioux F (1982) The regional distribution and chromatographic characterization of neurotensin-like immunoreactivity in the rat. In: Costa E, Trabucchi M (eds) Regulatory peptides: from molecular biology to function. Raven, New York, pp 477–486

    Google Scholar 

  • Enjalbert A, Epelbaum J, Arancibia S, Tapia-Arancibia L, Bluet-Pajot MT, Kordon C (1982) Reciprocal interactions of somatostatin with thyrotropin-releasing hormone and vasoactive intestinal peptide on prolactin and growth hormone secretion in vitro. Endocrinology 111:42–47

    PubMed  CAS  Google Scholar 

  • Ermisch A, Rühle H J, Klauschenz E, Kretzschmar R (1984) On the blood-brain barrier to peptides: (3H) gonadotropin-releasing hormone accumulation by eighteen regions of the rat brain and by anterior pituitary. Exp Clin Endocrinol 84:112–116

    PubMed  CAS  Google Scholar 

  • Ermisch A, Barth T, Rühle HJ, Škopková J, Hrbas P, Landgraf R (1985) On the blood-brain barrier to peptides: accumulation of labelled vasopressin, DesGlyNH2-vasopressin and oxytocin by brain regions. Endocrinol Exp 19:29–37

    PubMed  CAS  Google Scholar 

  • Farah JM jr, Malcolm DS, Mueller GP (1982) Dopaminergic inhibition of β-endorphin-like immunoreactivity secretion in the rat. Endocrinology 110:657–659

    PubMed  CAS  Google Scholar 

  • Fink G (1985) Has the prolactin inhibiting peptide at last been found? Nature 316:487–488

    PubMed  CAS  Google Scholar 

  • Fink G, Koch Y, Ben Aroya N (1982) Release of thyrotropin releasing hormone into hypophysial portal blood is high relative to other neuropeptides and may be related to prolactin secretion. Brain Res 243:186–189

    PubMed  CAS  Google Scholar 

  • Frawley LS, Leong DA, Neill JD (1985) Oxytocin attenuates TRH-induced TSH release from rat pituitary cells. Neuroendocrinology 40:201–204

    PubMed  CAS  Google Scholar 

  • Froehlich JC, Ben-Jonathan N (1984) Posterior pituitary involvement in the control of luteinizing hormone and prolactin secretion during the estrous cycle. Endocrinology 14:1059–1064

    Google Scholar 

  • Gainer H, Russell JT, Loh YP (1985) The enzymology and intracellular organization of peptide precursor processing: the secretory vesicle hypothesis. Neuroendocrinology 40:171–184

    PubMed  CAS  Google Scholar 

  • Gibbs DM (1985) Hypothalamic epinephrine is released into hypophysial portal blood during stress. Brain Res 335:360–364

    PubMed  CAS  Google Scholar 

  • Goldgefter L, Korochkin L (1970) Periventricular Gomori-positive glial cells in rat hypothalamus. Arch Anat Histol Embryol (Strasb) 59:9–16

    CAS  Google Scholar 

  • Grandison L, Guidotti A (1977) Regulation of prolactin release by endogenous opiates. Nature 270:357–359

    PubMed  CAS  Google Scholar 

  • Guillemin R, Brazeau P, Böhlen P, Esch F, Ling N, Wehrenberg WB (1982) Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218:585–587

    PubMed  CAS  Google Scholar 

  • Guy J, Benoit R, Pelletier G (1985) Immunocytochemical localization of somatostatin-28!1–12 in the rat hypothalamus. Brain Res 330:283–289

    PubMed  CAS  Google Scholar 

  • Hisano S, Kawano H, Maki Y, Daikoku S (1981) Electron microscopic study of immunoreactive LHRH perikarya with special reference to neuronal regulation. Cell Tissue Res 220:511–518

    PubMed  CAS  Google Scholar 

  • Hoffman GE, Wray S, Goldstein M (1982) Relationship of catecholamines and LHRH: light microscopic study. Brain Res Bull 9:417–430

    PubMed  CAS  Google Scholar 

  • Hökfelt T, Fahrenkrug J, Tatemoto K, Mutt V, Werner S, Hulting AL, Terenius L, Chang KJ (1983) The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc Natl Acad Sci USA 80:895–898

    PubMed  Google Scholar 

  • Hökfelt T, Barry JE, Theodorsson-Nordheim E, Goldstein M (1984) Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons. J Comp Neurol 222:543–559

    PubMed  Google Scholar 

  • Holzbauer M, Muscholl E, Rache K, Sharman DF (1983) Evidence that dopamine is a neurotransmitter in the neurointermediate lobe of the hypophysis. In: The neurohypophysis. Structure, function and control. Prog Brain Res 60:357–364

    CAS  Google Scholar 

  • Holzbauer M, Racké K, Sharman DF (1985) Release of endogenous 6-hydroxytryptamine from the neural and the intermediate lobe of the rat pituitary gland evoked by electrical stimulation of the pituitary stalk. Neuroscience 15:723–728

    PubMed  CAS  Google Scholar 

  • Ibata Y, Kawakami F, Fukui K, Okamura H, Obata-Tsutu HL, Tsuto T, Terubayashi H (1984) Morphological survey of neurotensin-like immunoreactive neurons in the hypothalamus. Peptides 5 [Suppl] 109–120

    PubMed  CAS  Google Scholar 

  • Jennes L, Beckmann WC, Stumpf WE, Grzanna R (1982 a) Anatomical relationships of serotoninergic and noradrenalinergic projections with the GnRH system in septum and hypothalamus. Exp Brain Res 46:331–338

    PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE, Kalivas PW (1982 b) Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 210:211–224

    PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE, Tappaz ML (1983) Anatomical relationships of dopaminergic and GABAergic systems with the GnRH-systems in the septo-hypothalamic area. Irnmuno-histochemical studies. Exp Brain Res 50:91–99

    PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE, Sheedy ME (1985) Ultrastructural characterization of gonadotropin-releasing hormone (GnRH)-producing neurons. J Comp Neurol 232:534–547

    PubMed  CAS  Google Scholar 

  • Johannsson O, Hökfelt T (1980) Immunohistochemical distribution of thyrotropin-releasing hormone, somatostatin and enkephalin with special reference to the hypothalamus. In: Wuttke W, Weindl A, Voigt KH, Driess RR (eds) Brain and pituitary peptides. Karger, Basel, pp 202–212

    Google Scholar 

  • Johannsson O, Hökfelt T, Jeffcoate SL, White N, Sternberger LA (1980) Ultrastructural localization of TRH-like immunoreactivity. Exp Brain Res 38:1–10

    Google Scholar 

  • Johannsson O, Hökfelt T, Elde RP (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13:265–339

    Google Scholar 

  • Kaplan GP, Hartman KB, Creveling CR (1981) Localization of catechol-O-methyltransferase in the leptomeninges, choroid plexus and ciliary epithelium: implications for the separation of central and peripheral catechols. Brain Res 204:353–360

    PubMed  CAS  Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1982 a) Immunohistochemical demonstration of the localization of corticotropin releasing factor-containing neurons in the hypothalamus of mammals including primates. Anat Embryol 165:303–313

    PubMed  CAS  Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1982 b) Immunohistochemical demonstration of corticotropin releasing factor containing nerve fibers in the median eminence of the rat and monkey. Histochemistry 76:15–19

    PubMed  CAS  Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1983) Immunohistochemical identification of neurons containing corticotropin-releasing factor in the rat hypothalamus. Cell Tissue Res 230:239–246

    PubMed  CAS  Google Scholar 

  • Kerdelhué B, Tartar A, Lenoir V, El Abed A, Hublau P, Millar RP (1985) Binding studies of substance P anterior pituitary binding sites: changes in substance P binding sites during the rat estrous cycle. Regul Pept 10:133–143

    PubMed  Google Scholar 

  • Khachaturian H, Watson SJ, Lewis ME, Coy D, Goldstein A, Akil H (1982) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3:941–954

    PubMed  CAS  Google Scholar 

  • King JC, Anthony ELP (1983) Biosynthesis of LHRH: inferences from immunocytochemical studies. Peptides 4:963–970

    PubMed  CAS  Google Scholar 

  • Kiss J, Halász B (1985) Demonstration of serotoninergic axons terminating on luteinizing hormone-releasing hormone neurons in the preoptic area of the rat using a combination of immunocytochemistry and high resolution autoradiography. Neuroscience 14:69–78

    PubMed  CAS  Google Scholar 

  • Kiss JZ, Mezey E, Cassell MD, Williams TH, Mueller GP, O’Donohue TL, Palkovits M (1985) Topographical distribution of pro-opiomelanocortin-derived peptides (ACTH/ β-END/α-MSH) in the rat median eminence. Brain Res 329:169–176

    PubMed  CAS  Google Scholar 

  • Knigge KM, Morris M, Scott DE, Joseph SA, Notter M, Schock D, Krobisch-Dudley G (1975) Distribution of hormones by cerebrospinal fluid. In: Cserr HF, Fenstermacher JD, Fencl V (eds) Fluid environment of the brain. Academic, New York, pp 237–253

    Google Scholar 

  • Knowles F, Bern HA (1966) The function of neurosecretion in endocrine regulation. Nature 210:271–272

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Matsui T, Ishii S (1970) Functional microscopy of the hypothalamic median eminence. Int Rev Cytol 29:282–381

    Google Scholar 

  • Koritsánsky S, Vigh B, Aros B (1967) Studies on the Gomori-positive glial cells. I. The changes in the periventricular Gomori-positive glial cells in rats of various ages. Acta Biol Hung 18:9–19

    Google Scholar 

  • Krieger DT (1981) Circadian rhythms. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York, pp 447–448

    Google Scholar 

  • Krisch B (1980 a) Immunocytochemistry of neuroendocrine systems (vasopressin, somatostatin, luliberin). Prog Histochem Cytochem 13(2): 1–166

    PubMed  CAS  Google Scholar 

  • Krisch B (1980 b) Two types of luliberin-immunoreactive perikarya in the preoptic area of the rat. Cell Tissue Res 212:443–455

    PubMed  CAS  Google Scholar 

  • Krisch B (1980 c) Differing immunoreactivities of somatostatin in the cortex and the hypothalamus of the rat. A light and electron microscopic study. Cell Tissue Res 212:457–464

    PubMed  CAS  Google Scholar 

  • Krisch B (1981 a) Somatostatin-immunoreactive fiber projections into the brain stem and the spinal cord of the rat. Cell Tissue Res 217:431–552

    Google Scholar 

  • Krisch B (1981 b) Distribution of somatostatin and luliberin in the rat brain. In: Farner DS, Lederis K (eds) Neurosecretion. Molecules, cells, systems. Plenum, New York, pp 49–59

    Google Scholar 

  • Krisch B, Buchheim W (1984) Access and distribution of exogenous substances in the intercellular clefts of the rat adenohypophysis. Cell Tissue Res 236:439–452

    PubMed  CAS  Google Scholar 

  • Krisch B, Leonhardt H (1980 a) Luliberin and somatostatin fiber-terminals in the subfornical organ of the rat. Cell Tissue Res 210:33–45

    PubMed  CAS  Google Scholar 

  • Krisch B, Leonhardt H (1980 b) Neurohormones in the intercellular clefts and in glia-like cells of the rat brain. Cell Tissue Res 211:251–268

    PubMed  CAS  Google Scholar 

  • Krisch B, Leonhardt H, Buchheim W (1978) The functional and structural border of the neurohemal region of the median eminence. Cell Tissue Res 192:327–339

    PubMed  CAS  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1983) The meningeal compartments of the median eminence and the cortex. A comparative analysis in the rat. Cell Tissue Res 228:597–640

    PubMed  CAS  Google Scholar 

  • Lauber M, Camier M, Cohen P (1979) Higher molecular weight forms of immunoreactive somatostatin in mouse hypothalamic extracts: evidence of processing in vitro. Proc Natl Acad Sci USA 76:6004–6008

    PubMed  CAS  Google Scholar 

  • Lechan RM, Goodman RH, Rosenblatt M, Reichlin S, Haberer JF (1983) Prosomatostatin-specific antigen in rat brain: localization by immunocytochemical staining with an antiserum to a synthetic sequence of preprosomatostatin. Proc Natl Acad Sci USA 80:2780–2784

    PubMed  CAS  Google Scholar 

  • Lechan RM, Lin HD, Ling N, Jackson IMD, Jacobson S, Reichlin S (1984) Distribution of immunoreactive growth hormone releasing factor (1–44)NH2 in the tuberoinfundibular system of the rhesus monkey. Brain Res 309:55–61

    PubMed  CAS  Google Scholar 

  • Leonardelli J, Tramu G (1979) Immunoreactivity for β-endorphin in LH-RH neurons of the fetal human hypothalamus. Cell Tissue Res 203:201–207

    PubMed  CAS  Google Scholar 

  • Leonhardt H (1980) Ependym und circumventrikuläre Organe. In: Oksche A, Vollrath L (eds) Neuroglia I. Springer, Berlin Heidelberg New York, S 177–666 (Handbuch der mikroskopischen Anatomie des Menschen, vol 4/10)

    Google Scholar 

  • Leonhardt H, Krisch B, Hartwig HG (1983) Circumventricular organs as targets and release sites for peptide hormones and monoamines. In: Sano Y, Ibata Y, Zimmerman EA (eds) Structure and function of peptidergic and aminergic neurons. Taniguchi Symposia on brain science No. 6. Japan Scientific Societies, Tokyo, pp 55–71

    Google Scholar 

  • Léránth C, Palkovits M, Krieger DT (1983) Serotonin immunoreactive nerve fibres and terminals in the rat pituitary. Light-and electron-microscopic studies. Neuroscience 9:289–296

    PubMed  Google Scholar 

  • Léránth C, MacLusky NJ, Sakamoto H, Shanabrough M, Naftolin F (1985) Glutamic acid decarboxylase-containing axons synapse on LHRH neurons in the rat medial preoptic area. Neuroendocrinology 40:536–539

    PubMed  Google Scholar 

  • Lind WR, Swanson LW, Bruhn TO, Ganten D (1985) The distribution of angiotensin II-immunoreactive cells and fibers in the paraventriculo-hypophysial system of the rat. Brain Res 338:81–89

    PubMed  CAS  Google Scholar 

  • Liotta AS, Advis JP, Krause JE, McKelvy JF, Krieger DT (1984) Demonstration of in vivo synthesis of proopiomelanocortin-, β-endorphin-, and α-melanotropin-like species in the adult rat brain. J Neurosci 4:956–965

    PubMed  CAS  Google Scholar 

  • Liposits Z, Léngvari J, Vigh S, Serially A, Flerkó B (1983) Immunohistological detection of degenerating CRF-immunoreactive nerve fibers in the median eminence after lesion of paraventricular nucleus of the rat. A light and electron microscopic study. Peptides 4:941–953

    PubMed  CAS  Google Scholar 

  • Loh YP, Brownstein MJ, Gainer H (1984) Proteolysis in neuropeptide processing and other neural functions. Ann Rev Neurosci 7:189–222

    PubMed  CAS  Google Scholar 

  • Lookingland KJ, Farah JM Jr, Lovell KL, Moore KE (1985) Differential regulation of tuberohypophysial dopaminergic neurons terminating in the intermediate lobe and in the neural lobe of the rat pituitary gland. Neuroendocrinology 40:145–151

    PubMed  CAS  Google Scholar 

  • Maeda K, Frohman LA (1980) Release of somatostatin-and thyrotropin-releasing hormone from rat hypothalamic fragments in vitro. Endocrinology 106:1837–1842

    PubMed  CAS  Google Scholar 

  • Mann DR, Evans D, Edoimioya F, Kamel F, Butterstein GM (1985) A detailed examination of the in vivo and in vitro effects of ACTH on gonadotropin secretion in the adult rat. Neuroendocrinology 40:297–302

    PubMed  CAS  Google Scholar 

  • Martin R, Voigt KH (1981) Enkephalins co-exist with oxytocin and vasopressin in nerve terminals of rat neurohypophysis. Nature 289:502–504

    PubMed  CAS  Google Scholar 

  • Martin R, Voigt KH (1982) Leucine-enkephalin-like immunoreactivity in vasopressin terminals is enhanced by treatment with peptidases. Life Sci 31:1729–1732

    PubMed  CAS  Google Scholar 

  • Martin R, Geis R, Holl R, Schäfer M, Voigt KH (1983) Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: immunoreactive methionine-enkephalin-, leucine-enkephalin-and cholecystokinin-like substances. Neuroscience 8:213–227

    PubMed  CAS  Google Scholar 

  • Martini L (1974) Recent advances in the study of the hypothalamic releasing factors. In: Knowles F, Vollrath L (eds) Neurosecretion — the final neuroendocrine pathway. Springer, Berlin Heidelberg New York, pp 135–147

    Google Scholar 

  • Matsumura M, Yamanoi A, Yamemoto S, Saito S (1983) In vivo and in vitro effects of cholecystokinin octapeptide on the release of β-endorphin-like immunoreactivity. Neuroendocrinology 36:443–448

    PubMed  CAS  Google Scholar 

  • Matsumura M, Yamanoi A, Yamamoto S, More H, Saito S (1984) In vivo and in vitro effects of cholecystokinin octapeptide on the release of growth hormone in rats. Horm Metabol Res 16:626–630

    CAS  Google Scholar 

  • Matsumura M, Yamanoi A, Yamamoto S, Mori H, Saito S (1985) In vivo and in vitro effects of cholecystokinin octapeptide on the release of prolactin in rats. Horm Metabol Res 17:293–297

    CAS  Google Scholar 

  • Mayo KE, Cerelli GM, Rosenfeld MG, Evans RM (1985) Characterization of cDNA and genomic clones encoding the precursor to rat hypothalamic growth hormone-releasing factor. Nature 314:464–467

    PubMed  CAS  Google Scholar 

  • McCann SM, Vijayan E, Samson WK, Koenig J, Krulich L (1980) Role of brain peptides in the control of pituitary hormone release. In: Wuttke W, Weindl A, Voigt KH, Driess RR (eds) Brain and pituitary peptides. Karger, Basel, pp 223–233

    Google Scholar 

  • Merchenthaler I, Vigh S, Petrusz P, Schally AV (1983) The paraventriculo-infundibular corticotropin releasing factor (CRF) pathway as revealed by immunocytochemistry in long-term hypophysectomized or adrenalectomized rats. Regul Pept 5:295–305

    PubMed  CAS  Google Scholar 

  • Mezey E, Kiss JZ (1985) Vasoactive intestinal peptide-containing neurons in the paraventricular nucleus may participate in regulating prolactin secretion. Proc Natl Acad Sci USA 82:245–247

    PubMed  CAS  Google Scholar 

  • Mezey É, Palkovits M (1982 a) Two-way transport in the hypothalamo-hypophyseal system. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology 6. Raven, New York, pp 1–29

    Google Scholar 

  • Mezey É, Palkovits M (1982 b) Meningeal relations of the rat hypothalamo-hypophysial system. Extravascular fluid spaces in and around the median eminence. Brain Res 250:21–30

    PubMed  CAS  Google Scholar 

  • Mezey É, Palkovits M, de Kloet ER, Verhoef J, de Wied D (1978) Evidence for pituitary-brain transport of a behaviorally potent ACTH analog. Life Sci 22:831–838

    PubMed  CAS  Google Scholar 

  • Milian MJ, Herz A (1985) The endocrinology of the opioids. Int Rev Neurobiol 26:1–81

    Google Scholar 

  • Millar RP, Sheward WJ, Wegener I, Fink G (1983) Somatostatin-28 is an hormonally active peptide secreted into hypophysial portal vessel blood. Brain Res 260:334–337

    PubMed  CAS  Google Scholar 

  • Moore KE, Demarest KT (1982) Tuberoinfundibular and tuberohypophysial dopaminergic neurons. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology 7. Raven, New York, pp 161–190

    Google Scholar 

  • Moore RY (1981) The suprachiasmatic nucleus, circadian rhythms, and regulation of brain peptides. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York, pp 449–459

    Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1:129–169

    PubMed  CAS  Google Scholar 

  • Morel G, Leroux P, Pelletier G (1985) Ultrastructural autoradiographic localization of somatostatin-28 in the rat pituitary gland. Endocrinology 116:1615–1620

    PubMed  CAS  Google Scholar 

  • Morris JF (1983) Organization of neural inputs to the supraoptic and paraventricular nuclei: anatomical aspects. In: The neurohypophysis: structure, function and control. Prog Brain Res 60:3–18

    CAS  Google Scholar 

  • Motta M, Martini L (1972) Hypothalamic releasing factors: a new class of “neurotransmitters.” Arch Int Pharmacodyn [Suppl] 196:191–204

    Google Scholar 

  • Mulder AH (1982) An overview of subcellular localization, release and termination of action of amine, amino acid and peptide neurotransmitters in the central nervous system. In: Chemical transmission in the brain. The role of amines, amino acids and peptides. Prog Brain Res 55:135–156

    CAS  Google Scholar 

  • Murakami T (1975) Pliable methacrylate casts of blood vessels: use in a scanning electron microscope study of the microcirculation in rat hypophysis. Arch Histol Jpn 38:151–168

    PubMed  CAS  Google Scholar 

  • Murakami T, Ohtsuka A, Taguchi T, Kikuta A, Ontani O (1985) Blood vascular bed of the rat pituitary intermediate lobe, with special reference to its development and portal drainage into the anterior lobe. A scanning electron microscope study of vascular casts. Arch Histol Jpn 48:69–87

    PubMed  CAS  Google Scholar 

  • Nicholson C, Phillips JM, Gardner-Medwin AR (1979) Diffusion from a iontophoretic point source in the brain: role of tortuosity and volume fraction. Brain Res 169:580–584

    PubMed  CAS  Google Scholar 

  • Nikolics K, Mason AJ, Szönyi E, Ramachandran J, Seeburg PH (1985) A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature 316–511–517

    Google Scholar 

  • O’Donohue TL, Dorsa D (1982) The opiomelanotropinergic neuronal and endocrine systems. Peptides 3:353–395

    PubMed  Google Scholar 

  • Okamura H, Murakami S, Chihara K, Nagatsu I, Ibata Y (1985) Coexistence of growth hormone releasing factor-like and tyrosine hydroxylase-like immunoreactivities in neurons of the rat arcuate nucleus. Neuroendocrinology 41:177–179

    PubMed  CAS  Google Scholar 

  • Olschowka JA, O’Donohue TL, Mueller GP, Jacobowitz DM (1982) Hypothalamic and extrahypothalamic distribution of CRF-like immunoreactive neurons in the rat brain. Neuroendocrinology 35:305–308

    PubMed  CAS  Google Scholar 

  • Page RB, Dovey-Hartman BJ (1984) Resistance vessels supplying the median eminence of the rabbit, rat and cat. Anat Rec 210:647–655

    PubMed  CAS  Google Scholar 

  • Pardridge WM, Frank HJL, Cornford WM, Braun LD, Crane PD, Oldendorf WH (1981) Neuropeptides and the blood-brain barrier. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven, New York, pp 321–328

    Google Scholar 

  • Patel GC, Wheatley T, Ning Ch (1981) Multiple forms of immunoreactive somatostatin: comparison of distribution in neural and nonneural tissues and portal plasma of the rat. Endocrinology 190:1943–1949

    Google Scholar 

  • Pauli WK, Gibbs FP (1983) The corticotropin releasing factor (CRF) neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone treated rats. Histochemistry 78:303–316

    Google Scholar 

  • Pelletier G (1980) Immunohistochemical localization of somatostatin. Prog Histochem Cytochem 12(3):1–41

    PubMed  CAS  Google Scholar 

  • Pelletier G, Désy L, Lôté J, Lefèvre G, Vaudry H, Labrie F (1982) Immunoelectron microscopic localization of corticotropin-releasing factor in the rat hypothalamus. Neuroen-docrinology 35:402–404

    CAS  Google Scholar 

  • Phillips HS, Nikolics K, Branton D, Seeburg PH (1985) Immunocytochemical localization in rat brain of a prolactin release-inhibiting sequence of gonadotropin-releasing hormone prohormone. Nature 316:542–545

    PubMed  CAS  Google Scholar 

  • Pitelka DR, Hamamoto ST, Duafala JG, Nemanic MK (1973) Cell contacts in the mouse mammary gland. I. Normal gland in postnatal development and the secretory cycle. J Cell Biol 56:797–818

    PubMed  CAS  Google Scholar 

  • Porter JC, Mical RS, Ondo JG, Kamberi IA (1972) Perfusion of the rat anterior pituitary via a cannulated portal vessel. Acta Endocrinol (Copenh) [Suppl] 158:249–269

    CAS  Google Scholar 

  • Purves D, Hadley RD (1985) Changes in the dendritic branching of adult mammalian neurones revealed by repeated imaging in situ. Nature 315:404–406

    PubMed  CAS  Google Scholar 

  • Reymond MJ, Kaur Ch, Porter JC (1983) An inhibitory role for morphine on the release of dopamine into hypophysial portal blood and on the synthesis of dopamine in tuberoinfundibular neurons. Brain Res 262:253–258

    PubMed  CAS  Google Scholar 

  • Rice ME, Gerhardt GA, Hierl PM, Nagy G, Adams RN (1985) Diffusion coefficients of neurotransmitters and their metabolites in brain extracellular fluid space. Neuroscience 15:891–902

    PubMed  CAS  Google Scholar 

  • Richardson I, Schönbrunn A (1981) Inhibition of adrenocorticotropin secretion by somatostatin in pituitary cells in culture. Endocrinology 108:281–290

    PubMed  CAS  Google Scholar 

  • Richter D (1985) Biosynthesis of vasopressin. In: Ganten D, Pfaff D (eds) Neurobiology of vasopressin. Springer, Berlin Heidelberg New York Tokyo, pp 1–16 (Current topics in neuroendocrinology 4)

    Google Scholar 

  • Rivier C, Vale W (1983 a) Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology 113:939–942

    PubMed  CAS  Google Scholar 

  • Rivier C, Vale W (1983 b) Effect of angiotensin II on ACTH release in vivo: role of corticotropin-releasing factor. Regul Pept 7:253–258

    PubMed  CAS  Google Scholar 

  • Rivier J, Spiess J, Thorner MJ, Vale W (1982) Characterization of a growth hormone-releasing factor from a human pancreatic tumor. Nature 300:276–278

    PubMed  CAS  Google Scholar 

  • Rivier C, Rivier J, Lederis K, Vale W (1983 a) In vitro and in vivo ACTH-releasing activity of ovine CRF, sauvagine and urotensin I. Regul Pept 5:139–143

    PubMed  CAS  Google Scholar 

  • Rivier J, Spiess J, Vale W (1983 b) Characterization of rat hypothalamic corticotropin-releasing factor. Proc Natl Acad Sci USA 80:4851–4855

    PubMed  CAS  Google Scholar 

  • Rivier C, Rivier J, Mormede P, Vale W (1984) Studies of the nature of the interaction between vasopressin and corticotropin-releasing factor on adrenocorticotropin release in the rat. Endocrinology 115:882–886

    PubMed  CAS  Google Scholar 

  • Rønnekleiv OK, Kelly MJ, Eskay RL (1984) Distribution of immunoreactive substance P neurons in the hypothalamus and pituitary of the rhesus monkey. J Comp Neurol 224:51–59

    PubMed  Google Scholar 

  • Rostène WH (1984) Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP). Prog Neurobiol 22:103–129

    PubMed  Google Scholar 

  • Roth K, Weber E, Barchas JD, Chang D, Chang JK (1983) Immunoreactive dynorphin-(1–8) and corticotropin-releasing factor in subpopulation of hypothalamic neurons. Science 219:189–191

    PubMed  CAS  Google Scholar 

  • Samson WK, Burton KP, Reeves JP, McCann SM (1981) Vasoactive intestinal peptide stimulates luteinizing hormone-releasing hormone release from median eminence synaptosomes. Regul Pept 2:253–264

    PubMed  CAS  Google Scholar 

  • Samson WK, Lumpkin MD, McDonald JK, McCann SM (1983) Prolactin-releasing activity of porcine intestinal peptide (PHI-27). Peptides 4:817–819

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Vale WW (1984) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci USA 81:1883–1887

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Rivier J, Vale WW (1985) The distribution of growth-hormone-releasing factor (GFR) immunoreactivity in the central nervous system of the rat: an immunohistochemical study using antisera directed against rat hypothalamic GFR. J Comp Neurol 237:100–115

    PubMed  CAS  Google Scholar 

  • Scharrer E (1936) Vergleichende Untersuchungen über die zentralen Anteile des vegetativen Systems. Z Anat Entwickl Gesch 106:169–192

    Google Scholar 

  • Scharrer E, Scharrer B (1954) Neurosekretion. In: Barmann W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen 5. Springer, Berlin Göttingen Heidelberg, S 953–1066

    Google Scholar 

  • Seeburg PH, Adelman JP (1984) Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature 311:666–668

    PubMed  CAS  Google Scholar 

  • Shaffer Tannenbaum G, Ling N, Brazeau P (1982) Somatostatin-28 is longer acting and more selective than somatostatin-14 on pituitary and pancreatic hormone release. Endocrinology 111:101–107

    Google Scholar 

  • Shimatsu A, Kato Y, Matsushita N, Katakami H, Yanaihara N, Imura H (1982) Effects of glucagon, neurotensin, and vasoactive intestinal polypeptide on somatostatin release from perfused rat hypothalamus. Endocrinology 110:2113–2117

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Witkin JW (1985) Synaptic interactions of luteinizing hormone-releasing hormone (LHRH) neurons in the guinea pig preoptic area. J Histochem Cytochem 33:69–72

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1975) Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol 67:863–885

    PubMed  CAS  Google Scholar 

  • Spiess J, Rivier J, Vale W (1983) Characterization of rat hypothalamic growth hormone-releasing factor. Nature 303:532–535

    PubMed  CAS  Google Scholar 

  • Spinedi E, Negro-Vilar A (1983) Angiotensin II and ACTH release: site of action and potency relative to corticotropin releasing factor and vasopressin. Neuroendocrinology 37:446–453

    PubMed  CAS  Google Scholar 

  • Spinedi E, Negro-Vilar A (1984) Arginine vasopressin and adrenocorticotropin release: correlation between binding characteristics and biological activity in anterior pituitary dispersed cells. Endocrinology 114:2247–2251

    PubMed  CAS  Google Scholar 

  • Stoeckel ME, Porte A, Klein MJ, Cuello AC (1982) Immunocytochemical localization of substance P in the neurohypophysis and hypothalamus of the mouse compared with the distribution of other neuropeptides. Cell Tissue Res 223:533–544

    PubMed  CAS  Google Scholar 

  • Sundler F, Alumets J, Ekblad E, Böttcher G, Håkanson R (1985) Coexistence of peptides in the neuroendocrine system. In: Håkanson R, Thorell J (eds) Biogenetics of neuro-hormonal peptides. Academic, New York, pp 213–243

    Google Scholar 

  • Swaab DF (1982) Neuropeptides. Their distribution and function in the brain. In: Chemical transmission in the brain. The role of amines, amino acids and peptides. Prog Brain Res 55:97–122

    CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohisto-chemical study. Neuroendocrinology 36:165–186

    PubMed  CAS  Google Scholar 

  • Tice LW, Wollman SH, Carter RC (1975) Changes in tight junctions of thyroid epithelium with changes in thyroid activity. J Cell Biol 66:657–663

    PubMed  CAS  Google Scholar 

  • Tilders FJH, Smelik PG (1977) Direct neural control of MSH secretion in mammals: involvement of dopaminergic tuberohypophysial neurons. In: Tilders FJH, Swaab DF, van Wimersma Greidanus TB (eds) Frontiers in Hormon Research, vol 4. Karger, Basel, pp 80–93

    Google Scholar 

  • Tilders F, Tatemoto K, Berkenbosch F (1984) The intestinal peptide PHI-27 potentiates the action of corticotropin-releasing factor on ACTH release from rat pituitary fragments in vitro. Endocrinology 115:1633–1635

    PubMed  CAS  Google Scholar 

  • Tizabi Y, Skofitsch G, Jacobowitz DM (1985) Effect of chronic reserpine and desmethyl-imipramine treatment on CRF-like immunoreactivity of discrete brain areas of rat. Brain Res 335:389–391

    PubMed  CAS  Google Scholar 

  • Toshimori K, Higashi R, Oura C (1983) Quantitative analysis of zonulae occludentes between oviductal epithelial cells at diestrous and estrous stages in the mouse: freeze-fracture study. Anat Rec 206:257–266

    PubMed  CAS  Google Scholar 

  • Tramu G, Leonardelli J (1979) Immunohistochemical localization of enkephalins in median eminence and adenohypophysis. Brain Res 168:457–471

    PubMed  CAS  Google Scholar 

  • Tramu G, Leonardelli J, Dubois MP (1977) Immunohistochemical evidence for an ACTH-like substance in hypothalamic LH-RH neurons. Neurosci Lett 6:305–309

    PubMed  CAS  Google Scholar 

  • Tramu G, Beauvillain JC, Croix D, Leonardelli J (1981) Comparative immunocytochemical localization of enkephalin and somatostatin in the median eminence, hypothalamus and adjacent areas of the guinea-pig brain. Brain Res 215:235–255

    PubMed  CAS  Google Scholar 

  • Tramu G, Croix C, Pillez A (1983) Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material. Neuroendocrinology 37:467–469

    PubMed  CAS  Google Scholar 

  • Tsuruo Y, Kawano H, Nishiyama T, Hisano S, Daikoku S (1983) Substance P-like immunoreactive neurons in the tuberoinfundibular area of rat hypothalamus. Light and electron microscopy. Brain Res 289:1–9

    PubMed  CAS  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213:1394–1397

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier C, Brown MR, Spiess J, Koob G, Swanson L, Bilezikjian L, Bloom F, Rivier J (1983 a) Chemical and biological characterization of corticotropin releasing factor. Rec Prog Horm Res 39:245–270

    PubMed  CAS  Google Scholar 

  • Vale W, Vaughan J, Smith M, Yamamoto G, Rivier J, Rivier C (1983 b) Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology 113:1121–1131

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, De Mey J, Gilles C (1980) Immunohistochemical localization of cholecystokinin-and gastrinlike peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77:1190–1194

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, Vandesande F, Dierickx K (1981) Co-existence of cholecystokinin and oxytocin-neurophysin in some magnocellular hypothalamo-hypophysial neurons. Cell Tissue Res 221:227–231

    PubMed  CAS  Google Scholar 

  • Van Houten M, Khan MN, Walsh RJ, Baquiran GB, Renaud L, Bourque C, Sgro S, Gauthier S, Chretien M, Posner BI (1985) NH2-terminal specificity and axonal localization of adrenocorticotropin binding sites in rat median eminence. Proc Natl Acad Sci USA 82:1271–1275

    PubMed  Google Scholar 

  • Van Leeuwen F (1982 a) Enkephalin in the rat neural lobe: immunocytochemical evidence for its presence within synaptic elements on pituicytes. In: Chemical transmission in the brain. The role of amines, amino acids and peptides. Prog Brain Res 55:135–156

    Google Scholar 

  • Van Leeuwen FW (1982 b) Enkephalin immunoreactivity in fibers terminating in a synaptoid fashion on pituicytes in the rat neural lobe. In: Costa E, Trabucchi M (eds) Regulatory peptides. From molecular biology to function. Raven, New York, pp 203–208

    Google Scholar 

  • Voight KH, Martin R (1985) Coexistence of unrelated neuropeptides in nerve terminals. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic, New York, pp 245–272

    Google Scholar 

  • Vollrath L (1974) New trends in vertebrate neurosecretion. In: Knowles F, Vollrath L (eds) Neurosecretion — The final neuroendocrine pathway. Springer, Berlin Heidelberg New York, pp 276–284

    Google Scholar 

  • Warembourg M, Poulain P (1985) Localization of serotonin in the hypothalamus and the mesencephalon of the guinea-pig. An immunohistochemical study using monoclonal antibodies. Cell Tissue Res 240:711–721

    PubMed  CAS  Google Scholar 

  • Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman EA, Nilaver G, van Wimersma Greidanus TB (1982) Dynorphin and vasopressin: common localization in magnocellular neurons. Science 216:85–87

    PubMed  CAS  Google Scholar 

  • Watson SJ, Khachaturian H, Taylor L, Fischli W, Goldstein A, Akil H (1983) Pro-dynorphin peptides are found in the same neurons throughout rat brain: immunocytochemical study. Proc Natl Acad Sci USA 80:891–894

    PubMed  CAS  Google Scholar 

  • Weitzman ED, Czeisler ChA, Zimmerman JC, Moore-Ede MC (1981) Biological rhythms in man: relationship of sleep-wake, Cortisol, growth hormone and temperature during temporal isolation. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion in brain peptides. Raven, New York, pp 475–499

    Google Scholar 

  • Wislocki GB, Leduc EH (1954) The cytology of the subcommissural organ, Reissner’s fiber, periventricular glial cells and posterior collicular recess of the rat’s brain. J Comp Neurol 101:283–309

    PubMed  CAS  Google Scholar 

  • Wittkowski W, Scheuer A (1974) Functional changes of the neuronal and glial elements at the surface of the external layer of the median eminence. Z Anat Entwickl Gesch 143:255–262

    CAS  Google Scholar 

  • Wolfson B, Manning RW, Davis LG, Arentzen R, Baldino FJr (1985) Co-localization of corticotropin releasing factor and vasopressin mRNA in neurones after adrenalectomy. Nature 315:59–61

    PubMed  CAS  Google Scholar 

  • Zingg HH, Patel YC (1980) Processing of somatostatin precursors: Evidence for enzymatic cleavage by hypothalamic extract. Biochem Biophys Res Commun 93:1274–1279

    PubMed  CAS  Google Scholar 

  • Zlokovic BV, Begley DJ, Chain-Eliash DG (1985) Blood-brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res 336:125–132

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krisch, B. (1986). Ultrastructure of Regulatory Neuroendocrine Neurons and Functionally Related Structures. In: Ganten, D., Pfaff, D. (eds) Morphology of Hypothalamus and Its Connections. Current Topics in Neuroendocrinology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71461-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71461-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71463-4

  • Online ISBN: 978-3-642-71461-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics