Skip to main content

Interconnectedness of Steroid Hormone-Binding Neurons: Existence and Implications

  • Conference paper
Morphology of Hypothalamus and Its Connections

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 7))

Abstract

Neurons in the central nervous system concentrate estrogen, progesterone, testosterone or dihydrotestosterone, and corticosterone. The location of these neurons in the brain has been determined by using autoradiographic (Pfaff 1968; Pfaff and Keiner 1973; Stumpf et al. 1975; Morrell and Pfaff 1981) and steroid receptorbinding techniques (McEwen et al. 1979). Steroid sex hormone-binding cells are found in the medial preoptic area, medial hypothalamus, and limbic forebrain areas in the vertebrate brain; in general, these neurons are found in brain regions that participate in behavioral and pituitary reproductive functions (McEwen et al. 1979). In contrast corticosterone-concentrating neurons are found primarily in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK, Wang RY (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res 122:229–242

    PubMed  CAS  Google Scholar 

  • Akagi K, Powell EW (1968) Differential projections of habenular nuclei. J Comp Neurol 132:263–274

    PubMed  CAS  Google Scholar 

  • Akil H, Watson SJ, Young E, Lewis ME, Khachatorian H, Walker MJ (1984) Endogenous opioids: biology and function. Annu Rev Neurosci 7:223–255

    PubMed  CAS  Google Scholar 

  • Alcaraz M, Guzman-Flores C, Salas M, Beyer C (1969) Effect of estrogen on the responsivity of hypothalamic and mesencephalic neurons in the female cat. Brain Res 15:439–446

    PubMed  CAS  Google Scholar 

  • Anderson CH, Shen CL (1980) Efferents of the medial preoptic area in the guinea pig: an autoradiographic study. Brain Res Bull 5:257–265

    PubMed  CAS  Google Scholar 

  • Andy OJ, Stephan H (1964) The septum of the cat. Thomas, Springfield

    Google Scholar 

  • Anschel S, Alexander M, Perachio AA (1982) Multiple connections of medial hypothalamic neurons in the rat. Exp Brain Res 46:383–392

    PubMed  CAS  Google Scholar 

  • Arees EA, Mayer J (1967) Anatomical connections between medial and lateral regions of the hypothalamus concerned with food intake. Science 157:1574–1575

    PubMed  CAS  Google Scholar 

  • Arnold A, Nottebohm F, Pfaff DW (1976) Hormone-concentrating cells in vocal control and other areas of the brain of the zebra finch (Poephila guttata). J Comp Neurol 165:487–512

    PubMed  CAS  Google Scholar 

  • Barfield R, Ronay G, Pfaff DW (1978) Autoradiographic localization of androgen-concentrating cells in the chicken brain. Neuroendocrinology 26:297–311

    PubMed  CAS  Google Scholar 

  • Beitz AJ (1982) The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience 7:133–159

    PubMed  CAS  Google Scholar 

  • Berk ML, Finkelstein JA (1981) Afferent projections to the preoptic area and hypothalamic regions in the rat brain. Neuroscience 6:1601–1624

    PubMed  CAS  Google Scholar 

  • Berk ML, Finkelstein JA (1982) Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull 8:511–526

    PubMed  CAS  Google Scholar 

  • Bueno J, Pfaff DW (1976) Single unit recording in hypothalamus and preoptic area of estrogen-treated and untreated ovariectomized female rats. Brain Res 101:67–78

    PubMed  CAS  Google Scholar 

  • Carr WJ, Loeb LS, Dissinger ML (1965) Response of rats to sex odors. J Comp Physiol Psychol 59:370–377

    PubMed  CAS  Google Scholar 

  • Carrer HF, Whitmoyer DI, Sawyer CH (1978) Effects of hippocampal and amygdaloid stimulation on the firing of preoptic neurons in the proestrous female rat. Brain Res 142:363–367

    PubMed  CAS  Google Scholar 

  • Chi CC (1970 a) Afferent connections to the ventromedial nucleus of the hypothalamus in the rat. Brain Res 17:439–445

    PubMed  CAS  Google Scholar 

  • Chi CC (1970 b) An experimental silver study of the ascending projections of the central gray substance and adjacent tegmentum in the rat with observations in the cat. J Comp Neurol 139:259–272

    PubMed  CAS  Google Scholar 

  • Chi CC, Flynn JP (1971) Neuroanatomic projections related to biting attack elicited from hypothalamus in cats. Brain Res 35:49–66

    PubMed  CAS  Google Scholar 

  • Chiba T, Murata Y (1985) Afferent and efferent connections of the medial preoptic area in the rat: a WGA-HRP study. Brain Res Bull 14:261–272

    PubMed  CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976 a) Autoradiographic tracing of nucleus accumbens efferents in the rat. Brain Res 113:589–596

    PubMed  CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976 b) Efferents from medial basal forebrain and hypothalamus in the rat. I. An autoradiographic study of the medial preoptic area. J Comp Neurol 169:185–220

    PubMed  CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976 c) Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169:221–262

    PubMed  CAS  Google Scholar 

  • Contestabile A, Flumerfelt BA (1981) Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: an HRP study in the rat. J Comp Neurol 196:253–270

    PubMed  CAS  Google Scholar 

  • Cottingham SL, Femano PA, Pfaff DW (1986) Effects of electrical stimulation of micbrain central gray on reticulospinal activation of axial muscle emg in the rat. In preparation

    Google Scholar 

  • Cragg BG (1961) The connections of the habenula in the rabbit. Exp Neurol 3:388–409

    PubMed  CAS  Google Scholar 

  • Cross BA, Dyer RG (1971) Cyclic changes in neurons of the anterior hypothalamus during the rat estrous cycle and the effect of anesthesia. In: Sawyer H, Gorski RA (eds) Steroid hormones and brain function. University of California Press, Los Angeles, pp 96–102 (UCLA Forum in medical sciences, no 15)

    Google Scholar 

  • Davis RE, Morrell JI, Pfaff DW (1977) Autoradiographic localization of sex steroid-concentrating cells in the brain of the teleost Macropodus opercularis (Osteichthyes: Belontiidae). Gen Comp Endocrinol 33:496–505

    PubMed  CAS  Google Scholar 

  • DeFrance JF (ed) (1976) The septal nuclei. Plenum, New York

    Google Scholar 

  • Demaine C, Perkins MN, Whitehead SA (1976) Amygdaloid-hypothalamic connections and catecholamines. J Physiol 260:57–58P

    Google Scholar 

  • De Olmos JS (1972) The amygdaloid projection field in the rat as studied with the cupric-silver method. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 145–204

    Google Scholar 

  • De Olmos JS, Ingram WR (1972) The projection field of the stria terminalis in the rat brain. An experimental study. J Comp Neurol 146:303–334

    PubMed  Google Scholar 

  • Dreifuss JJ (1972) Effects of electrical stimulation of amygdaloid complex on the ventromedial hypothalamus. In: Eleftheriou BE (ed) Neurobiology of the amygdala. Plenum, New York, pp 295–317

    Google Scholar 

  • Dreifuss JJ, Murphy JT, Gloor P (1968) Contrasting effets of two identified amygdaloid pathways on single hypothalamic neurons. J Neurophysiol 31:237–248

    PubMed  CAS  Google Scholar 

  • Dyer RG (1973) An electrophysiological dissection of the hypothalamic regions which regulate the pre-ovulatory secretion of luteinizing hormone in the rat. J Physiol 234:421–442

    PubMed  CAS  Google Scholar 

  • Dyer RG (1974) The electrophysiology of the hypothalamus and its endocrinological implications. Prog Brain Res 41:133–147

    PubMed  CAS  Google Scholar 

  • Dyer RG (1975) Characteristics of neurones projecting directly to the median eminence. In: Motta M, Crosignani PG, Martini L (eds) Hypothalamic hormones: chemistry, physiology, pharmacology and clinical uses. Academic, New York, pp 169–182

    Google Scholar 

  • Dyer RG, Pritchett CJ, Cross BA (1972) Unit activity in the diencephalon of female rats during the oestrous cycle. J Endocrinol 53:151–160

    PubMed  CAS  Google Scholar 

  • Dyer RG, Ellendorff F, MacLeod NK (1976 a) Non-random distribution of cell types in the preoptic and anterior hypothalamic areas. J Physiol 261:495–504

    PubMed  CAS  Google Scholar 

  • Dyer RG, MacLeod NK, Ellendorff F (1976 b) Electrophysiological evidence for sexual dimorphism and synaptic convergence in the preoptic and anterior hypothalamic areas of the rat. Proc R Soc Lond 13:421–440

    Google Scholar 

  • Eberhart JA, Morrell JI, Krieger MS, Pfaff DW (1985) An autoradiographic study of projections ascending from the midbrain central gray, and from the region lateral to it, in the rat. J Comp Neurol 241:285–310

    PubMed  CAS  Google Scholar 

  • Enoch DM, Kerr FWL (1967) Hypothalamic vasopressor and vesicopressor pathways: II. Anatomic study of their course and connections. Arch Neurol 16:307–320

    PubMed  CAS  Google Scholar 

  • Etgen AM (1984) Progestin receptors and the activation of female reproductive behavior: a critical review. Horm Behav 18:411–430

    PubMed  CAS  Google Scholar 

  • Feder H, Siegel H, Wade G (1974) Uptake of [6,73-H]estradiol-17β in ovariectomized rats, guinea pigs, and hamsters: correlation with species differences in behavioral responsiveness to estradiol. Brain Res 71:93–103

    PubMed  CAS  Google Scholar 

  • Fenske M, Ellendorff F, Wuttke W (1975) Response of medial preoptic neurons to electrical stimulation of the mediobasal hypothalamus, amygdala and mesencephalon in normal, serotonin or catecholamine deprived female rats. Exp Brain Res 22:495–507

    PubMed  CAS  Google Scholar 

  • Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212:952–955

    PubMed  CAS  Google Scholar 

  • Gerlach JL, McEwen BS (1972) Rat brain binds adrenal steroid hormone: radioautography of hippocampus with corticosterone. Science 175:1133–1136

    PubMed  CAS  Google Scholar 

  • Gerlach J, McEwen B, Pfaff D, Moskovitz S, Ferin M, Carmel P, Zimmerman E (1976) Cells in regions of rhesus monkey brain and pituitary retain radioactive estradiol, corticosterone and Cortisol differentially. Brain Res 103:603–612

    PubMed  CAS  Google Scholar 

  • Gloor P (1960) Amygdala. In: Field J, Magoun HW, Hall VE (eds) Neurophysiology. American Physiological Society, Washington (Handbook of physiology, vol II, sect I)

    Google Scholar 

  • Gloor P, Murphy JT, Dreifuss JJ (1972) Anatomical and physiological characteristics of the two amygdaloid proection systems to the ventromedial hypothalamus. In: Hockman CH (ed) Limbic systems mechanisms and autonomic function. Thomas, Springfield, pp 60–77

    Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    PubMed  CAS  Google Scholar 

  • Gorzalka BB, Whalen RE (1977) The effects of progestins, mineralocorticoids, glucocorticoids, and steroid solubility on the induction of sexual receptivity in rats. Horm Behav 8:94–99

    PubMed  CAS  Google Scholar 

  • Gray P, Brooks PJ (1984) Effect of lesion location within the medial preoptic-anterior hypothalamic continuum on material and male sexual behaviors in female rats. Behav Neurosci 98:703–711

    PubMed  CAS  Google Scholar 

  • Hall E (1963) Efferent connections of the basal and lateral nuclei of the amygdala in cat. Am J Anat 113:139–145

    PubMed  CAS  Google Scholar 

  • Halpern M, Morrell JI, Pfaff DW (1982) Cellular [3H]estradiol and [3H]testosterone localization in the brains of garter snakes: an autoradiographic study. Gen Comp Endocrinol 46:211–224

    PubMed  CAS  Google Scholar 

  • Hamilton BL (1973) Projections of the nuclei of the periaqueductal gray matter in the cat. J Comp Neurol 152:45–58

    PubMed  CAS  Google Scholar 

  • Hamilton BL, Skultety FM (1970) Efferent connections of the periaqueductal gray matter in the cat. J Comp Neurol 139:105–114

    PubMed  CAS  Google Scholar 

  • Heimer L, Nauta WJH (1969) The hypothalamic distribution of the stria terminalis in the rat. Brain Res 13:284–297

    PubMed  CAS  Google Scholar 

  • Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146

    PubMed  CAS  Google Scholar 

  • Herkenham M, Nauta WJH (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187:19–48

    PubMed  CAS  Google Scholar 

  • Holzwarth-McBride M, Hurst EM, Knigge KM (1976) Monosodium glutamate induced lesions of the arcuate nucleus: endocrine deficiency and ultrastructure of the median eminence. Anat Rec 186:185–196

    PubMed  CAS  Google Scholar 

  • Iwahori N (1977) A golgi study on the habenular nucleus of the cat. J Comp Neurol 171:319–344

    Google Scholar 

  • Jennes L, Stumpf WE (1980) LHRH-systems in the brain of the golden hamster. Cell Tissue Res 209:239–256

    PubMed  CAS  Google Scholar 

  • Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol C 125:373–389

    CAS  Google Scholar 

  • John ER (1972) Switchboard versus statistical theories of learning and memory. Science 177:850–864

    PubMed  CAS  Google Scholar 

  • Jones KJ, McEwen BS, Pfaff DW (1985) Effects of estradiol on protein synthesis in vitro, in the ventromedial hypothalamic nucleus (VMN) and preoptic area (POA) of the female rat. Soc Neurosci Abstr 11:738

    Google Scholar 

  • Kaelber WW, Leeson CR (1967) A degeneration and electron microscopic study of the nucleus hypothalamics ventromedialis of the cat. J Anat 101:209–221

    PubMed  CAS  Google Scholar 

  • Kataoka K, Nakamura Y, Hassler R (1973) Habenulointerpeduncular tract: a possible cholinergic neuron in rat brain. BrainRes 62:264–267

    CAS  Google Scholar 

  • Kato K (1985) Progesterone receptors in brain and hypophysis. In: Ganten E, Pfaff D (eds) Current topics in neuroendocrinology, vol 5. Springer, Berlin Heidelberg New York Tokyo, pp 31–81

    Google Scholar 

  • Kato J, Onouchi T (1977) Specific progesterone receptors in the hypothalamus and anterior hypophysis of the rat. Endocrinology 101:920–928

    PubMed  CAS  Google Scholar 

  • Kawakami M, Terasawa E, Ibuki T (1970) Changes in multiple unit activity of the brain during the estrous cycle. Neuroendocrinology 6:30–48

    PubMed  CAS  Google Scholar 

  • Kawakami M, Akema T, Ando S (1979) Electrophysiological studies on the neural networks among estrogan and progesterone effective brain areas on lordosic behavior of the rat. Brain Res 169:287–301

    PubMed  CAS  Google Scholar 

  • Kelley DB, Pfaff DW (1978) Generalizations from comparative studies on neuroanatomical and endocrine mechanisms of sexual behavior. In: Hutchison JB (ed) Biological determinants of sexual behavior. Wiley, Chichester

    Google Scholar 

  • Kelley DB, Morrell JI, Pfaff DW (1975) Autoradiographic localization of hormone-concentrating cells in the brain of an amphibian (Xenopus laevis), I. Testosterone. J Comp Neurol 164:47–61

    PubMed  CAS  Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    PubMed  CAS  Google Scholar 

  • Kelly MJ, Moss RL, Dudley CA (1976) Differential sensitivity of preoptic-septal neurons to microelectrophoresed estrogen during the estrous cycle. Brain Res 114:152–157

    PubMed  CAS  Google Scholar 

  • Kelly MJ, Moss RL, Dudley CA (1977) The effects of microelectrophoretically applied estrogen, Cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrous cycle of the female rat. Exp Brain Res 30:53–64

    PubMed  CAS  Google Scholar 

  • Kelly MJ, Moss RL, Dudley CA (1978) The effects of ovariectomy on the responsiveness of preoptic-septal neurons to microelectrophoresed estrogen. Neurodendocrinology 25:204–211

    CAS  Google Scholar 

  • Kita H, Domura Y (1982) An HRP study of the afferent connections to rat medial hypothalamic region. Brain Res Bull 8:53–62

    PubMed  CAS  Google Scholar 

  • Kow L-M, Pfaff DW (1985) Estrogen effects on neuronal responsiveness to electrical and neurotransmitter stimulation: an in vitro study on the ventromedial nucleus of the hypothalamus. Brain Res 347:1–10

    PubMed  CAS  Google Scholar 

  • Kow L-M, Pfaff DW (1986) Behavioral effects of neuropeptides: some conceptual considerations. In: Negro-Vilar A, Conn PM (eds) Peptide hormones: effects and mechanisms of action. CRC Press, Boca Raton (in press)

    Google Scholar 

  • Krettek JE, Price JL (1978 a) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178:225–254

    PubMed  CAS  Google Scholar 

  • Krettek JE, Price JL (1978 b) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol 178:255–280

    PubMed  CAS  Google Scholar 

  • Krieger MS, Morrell JI, Pfaff DW (1976) Autoradiographic localization of estradiol-concentrating cells in the female hamster brain. Neuroendocrinology 22:193–205

    PubMed  CAS  Google Scholar 

  • Krieger MS, Morrell JI, Pfaff DW (1978) Neuroanatomical connections of steroid concentrating cell groups. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interaction, vol III: Neural hormones and reproduction. Karger, Basel, pp 197–211

    Google Scholar 

  • Krieger MS, Conrad LCA, Pfaff DW (1979) An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol 183:785–816

    PubMed  CAS  Google Scholar 

  • Kuhar M, Dehaven RN, Yamamura HI, Rommelspacher H, Simon VR (1975) Further evidence for cholinergic habenulointerpeduncular neurons: pharmacologic and functional characteristics. Brain Res 97:265–275

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1956) Certain fiber connections of the mesencephalic central gray matter. In: Kappers JA (ed) Progress in neurobiology. Elsevier, Amsterdam, pp 264–272

    Google Scholar 

  • Lenn JN (1976) Synapses in the interpeduncular nucleus: electron microscopy of normal and habenula lesioned rats. J Comp Neurol 166:73–100

    Google Scholar 

  • Leonard CM, Scott JW (1972) Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuroanatomical study. J Comp Neurol 141:313–330

    Google Scholar 

  • Leranth CS, Browstein MJ, Zaborsky L, Jaranyi ZS, Palkovitz M (1975) Morphological and biochemical changes in the rat interpeduncular nucleus following the transection of the habenulo-interpeduncular tract. Brain Res 99:124–128

    PubMed  CAS  Google Scholar 

  • Lieberburg I, McEwen BS (1977) Brain Cell nuclear retention of testosterone metabolites, 5a-dihydrotestosterone and estradiol-17β, in adult rats. Endocrinology 100:588–597

    PubMed  CAS  Google Scholar 

  • Lieberburg I, MacLusky NJ, McEwen BS (1977) 5a-dihydrotestosterone (DHT) receptors in rat brain and pituitary cell nuclei. Endocrinology 100:598–607

    PubMed  CAS  Google Scholar 

  • Lincoln DW (1967) Unit activity in the hypothalamus, septum and preoptic area of the rat: characteristics of spontaneous activity and the effect of oestrogen. J Endocrinol 37:177–189

    PubMed  CAS  Google Scholar 

  • Little WA, Shaw GL (1975) A statistical theory of short and long term memory. Behav Biol 14:115–133

    PubMed  CAS  Google Scholar 

  • Little WA, Shaw GL (1978) Analytic study of the storage capacity of a neural network. Math Biosci 39:281–290

    Google Scholar 

  • MacDonald N (1983) Trees and networks in biological models. Wiley, New York

    Google Scholar 

  • MacLeod NK, Mayer ML (1980) Electrophysiological analysis of pathways connecting the medial preoptic area with the mesencephalic central grey matter in rats. J Physiol 298:53–70

    PubMed  CAS  Google Scholar 

  • MacLusky NJ, McEwen BS (1978) Oestrogen modulates progestin receptor concentrations in some brain regions but not in others. Nature 274:276–277

    PubMed  CAS  Google Scholar 

  • MacLusky NJ, McEwen BS (1980) Progestin receptors in the rat brain: Distribution and properties of cytoplasmic progestin binding sites. Endocrinology 106:192–202

    PubMed  CAS  Google Scholar 

  • Maeda H, Mogenson GJ (1980) An electrophysiological study of inputs to neurons of the ventral tegmental area from the nucleus accumbens and medial preoptic-anterior hypothalamic areas. Brain Res 197:365–376

    PubMed  CAS  Google Scholar 

  • Makara GB, Hodacs L (1975) Rostral projections from the hypothalamic arcuate nucleus. Brain Res 84:23–29

    PubMed  CAS  Google Scholar 

  • Marchand ER, Riley JN, Moore RY (1980) Interpeduncular nucleus afferents in the rat. Brain Res 193:339–352

    PubMed  CAS  Google Scholar 

  • Marchand JE, Hagino N (1983) Afférents to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience 9:95–106

    PubMed  CAS  Google Scholar 

  • McBride RL, Sutin J (1977) Amygdaloid and pontine projections to the ventromedial nucleus of the hypothalamus. J Comp Neurol 174:377–396

    PubMed  CAS  Google Scholar 

  • McClure TD, Clark G (1968) Descending connections from hypothalamus. Exp Neurol 22:343–349

    PubMed  CAS  Google Scholar 

  • McEwen BS, Weiss JM, Schwartz LS (1969) Uptake of corticosterone by rat brain and its concentration by certain limbic structures. Brain Res 16:227–241

    PubMed  CAS  Google Scholar 

  • McEwen BS, Weiss JM, Schwartz LS (1970) Retention of corticosterone by cell nuclei from brain regions of adrenalectomized rats. Brain Res 17:471–482

    PubMed  CAS  Google Scholar 

  • McEwen BS, Davis PG, Parsons B, Pfaff DW (1979) The brain as a target for steroid hormone action. Annu Rev Neurosci 2:65–112

    PubMed  CAS  Google Scholar 

  • McEwen BS, Biegon A, Davis PG, Krey LC, Luine VN, McGinnis MY, Paden CM, Parsons B, Rainbow TC (1982) Steroid hormones: humoral signals which alter brain cell properties and function. Recent Prog Horm Res 38:41–92

    PubMed  CAS  Google Scholar 

  • Meibach RC (1977) Afferent connections of the amygdaloid complex in the cat. Anat Rec 187:653

    Google Scholar 

  • Meibach RC, Siegel A (1977) Efferent connections of the septal area in the rat: an analysis utilizing retrograde and anterograde transport methods. Brain Res 119:1–20

    PubMed  CAS  Google Scholar 

  • Millhouse OE (1969) A Golgi study of the descending medial forebrain bundle. Brain Res 15:341–363

    PubMed  CAS  Google Scholar 

  • Millhouse OE (1973 a) The organization of the ventromedial hypothalamic nucleus. Brain Res 55:71–87

    PubMed  CAS  Google Scholar 

  • Mulhouse OE (1973 b) Certain ventromedial hypothalamic afferents. Brain Res 55:89–105

    Google Scholar 

  • Miselis RR, Shapiro RE, Hand PJ (1979) Subfornical organ efferents to neural systems for control of body water. Science 205:1022–1025

    PubMed  CAS  Google Scholar 

  • Mitchell R (1963) Connections of the habenula and of the interpeduncular nucleus in the cat. J Comp Neurol 121:441–457

    PubMed  CAS  Google Scholar 

  • Mizuno N, Clemente CD, Sauerland EK (1969) Fiber projections from rostral basal fore-brain structures in the cat. Exp Neurol 25:220–237

    PubMed  CAS  Google Scholar 

  • Mobbs CV, Harlan RE, Pfaff DW (1985) An estradiol-induced protein synthesized in the ventral medial hypothalamus (VMH) and transported to the midbrain central gray (MCG). Soc Neurosci Abstr 11:1271

    Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    PubMed  CAS  Google Scholar 

  • Morrell JI, Pfaff DW (1981) Autoradiographic technique for steroid hormone localization. Application to the vertebrate brain. In: Adler NT (ed) Neuroendocrinology of reproduction. Plenum, New York, pp 519–531

    Google Scholar 

  • Morrell JI, Pfaff DW (1982) Characterization of estrogen-concentrating hypothalamic neurons by their axonal projections. Science 217:1273–1276

    PubMed  CAS  Google Scholar 

  • Morrell JI, Kelley DB, Pfaff DW (1975 a) Sex steroid binding in the brains of vertebrates. Studies with light-microscopic autoradiography. In: Knigge KM, Scott DE, Kobayashi H, Ishii S (eds) Brain-endocrine interaction, vol II. Karger, Basel, pp 230–256

    Google Scholar 

  • Morrell JI, Kelley DB, Pfaff DW (1975 b) Autoradiographic localization of hormone-concentrating cells in the brain of an amphibian, Xenopus laevis. II. Estradiol. J Comp Neurol 164:63–78

    PubMed  CAS  Google Scholar 

  • Morrell JI, Ballin A, Pfaff DW (1977) Autoradiographic demonstration of the pattern of H-estradiol concentrating cells in the brain of a carnivore, the mink, Mustela vison. Anat Rec 189:609–624

    PubMed  CAS  Google Scholar 

  • Morrell JI, Crews D, Ballin A, Morgentaler A, Pfaff DW (1979) 3H-Estradiol, 3H-testosterone and 3H-dihydrotestosterone localization in the brain of the lizard anolis carolinensis: an autoradiographic study. J Comp Neurol 188:201–223

    PubMed  CAS  Google Scholar 

  • Morrell JI, Greenberger LM, Pfaff DW (1981) Hypothalamic, other diencephalic, and telencephalic neurons that project to the dorsal midbrain. J Comp Neurol 201:589–620

    PubMed  CAS  Google Scholar 

  • Morrell JI, Wolinsky TD, Krieger MS, Pfaff DW (1982) Autoradiographic identification of estradiol-concentrating cells in the spinal cord of the female rat. Exp Brain Res 45:144–150

    PubMed  CAS  Google Scholar 

  • Morrell JI, Schwanzel-Fukuda M, Fahrbach SE, Pfaff DW (1984) Axonal projections and peptide content of steroid hormone concentrating neurons. Peptides 5, [Suppl] 1:227–239

    PubMed  CAS  Google Scholar 

  • Moss RL, Law OT (1971) The estrous cycle: its influence on single unit activity in the fore-brain. Brain Res 30:435–438

    PubMed  CAS  Google Scholar 

  • Murphy JT (1972) The role of the amygdala in controlling hypothalamic output. In: Eleftheriou BE (ed) Neurobiology of the amygdala. Plenum, New York, pp 295–317

    Google Scholar 

  • Murphy JT, Renaud LP (1969) Mechanisms of inhibition in the ventromedial nucleus of the hypothalamus. J Neurophysiol 32:85–102

    PubMed  CAS  Google Scholar 

  • Murphy JT, Dreifuss JJ, Gloor P (1968 a) Topographical differences in the responses of single hypothalamic neurons to limbic stimulation. Am J Physiol 214:1443–1453

    PubMed  CAS  Google Scholar 

  • Murphy JT, Dreifuss JJ, Gloor P (1968 b) Responses of hypothalamic neurons to repetitive amygdaloid stimulation. Brain Res 8:153–166

    PubMed  CAS  Google Scholar 

  • Nauta WJH (1956) An experimental study of the fornix system in the rat. J Comp Neurol 104:247–271

    PubMed  CAS  Google Scholar 

  • Nauta WJH (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81:319–340

    PubMed  CAS  Google Scholar 

  • Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  • Nauta WJH, Smith GP, Faull RLM, Domesick VB (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3:385–401

    PubMed  CAS  Google Scholar 

  • Ottersen OP (1980) Afferent connections to the amygdaloid complex of the rat and cat. II. Afferents from the hypothalamus and the basal telencephalon. J Comp Neurol 194:267–289

    PubMed  CAS  Google Scholar 

  • Palkovits M, Zaborszky L (1979) Neural connections of the hypothalamus. In: Morgane PJ, Panksepp J (eds) Anatomy of the hypothalamus. Dekker, New York, pp 379–509 (Handbook of the hypothalamus, vol 1)

    Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 38:725–743

    Google Scholar 

  • Parsons B, Rainbow TC, MacLusky NJ, McEwen BS (1982) Progestin receptor levels in rat hypothalamic and limbic nuclei. J Neurosci 2:1446–1452

    PubMed  CAS  Google Scholar 

  • Pfaff DW (1968) Autoradiographic localization of radioactivity in the rat brain after injection of tritiated sex hormones. Science 161:1355–1356

    PubMed  CAS  Google Scholar 

  • Pfaff DW (1973) Interactions of steroid sex hormones with brain tissue: studies of uptake and physiological effects. In: Segal S et al. (eds) The regulation of mamalian reproduction. Springfield, Ill: Thomas, pp 5–22

    Google Scholar 

  • Pfaff DW, Conrad LCA (1978) Hypothalamic neuroanatomy: steroid hormone binding and patterns of axonal projections. Int Rev Cytol 54:245–265

    PubMed  CAS  Google Scholar 

  • Pfaff DW, Keiner M (1973) Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J Comp Neurol 151:121–158

    PubMed  CAS  Google Scholar 

  • Pfaff DW, Pfaffmann CP (1969) Behavioral and electrophysiological responses of male rats to female rat urine odor. In: Pfaffmann C (ed) Olfaction and taste. Rockefeller University Press, New York, pp 258–267

    Google Scholar 

  • Pfaff DW, Gerlach JL, McEwen BS, Ferin M, Carmel P, Zimmerman EA (1976) Autoradiographic localization of hormone-concentrating cells in the brain of the female rhesus monkey. J Comp Neurol 170:279–294

    PubMed  CAS  Google Scholar 

  • Phillipson OT (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 187:117–144

    PubMed  CAS  Google Scholar 

  • Pittman QJ, Blume HW, Kearney RE, Renaud LP (1979) Influence of midbrain stimulation on the excitability of neurons in the medial hypothalamus of the rat. Brain Res 174:39–53

    PubMed  CAS  Google Scholar 

  • Poulain P (1977) Septal afférents to the arcuate-median eminence region in the guinea pig: correlative electrophysiological and horseradish peroxidase studies. Brain Res 137:150–153

    PubMed  CAS  Google Scholar 

  • Powell EW, Leman RB (1976) Connections of the nucleus accumbens. Brain Res 105:389–403

    PubMed  CAS  Google Scholar 

  • Powell TPS, Cowan WM, Raisman G (1963) Olfactory relationships of the diencephalon. Nature 199:710–712

    PubMed  CAS  Google Scholar 

  • Price JL, Amarai DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    PubMed  CAS  Google Scholar 

  • Rainbow TC, Parsons B, MacLusky NJ, McEwen BS (1982 a) Estradiol receptor levels in rat hypothalamic and limbic nuclei. J Neurosci 2:1439–1445

    PubMed  CAS  Google Scholar 

  • Rainbow TC, Parsons B, McEwen BS (1982 b) Sex differences in rat brain oestrogen and progestin receptors. Nature 300:648–649

    PubMed  CAS  Google Scholar 

  • Raisman G (1966) The connexions of the septum. Brain 89:317–348

    PubMed  CAS  Google Scholar 

  • Rees HD, Switz GM, Michael RP (1980) The estrogen-sensitive neural system in the brain of female cats. J Comp Neurol 193:789–804

    PubMed  CAS  Google Scholar 

  • Renaud LP (1976 a) Electrophysiological evidence for axon collaterals in the tuberoinfuncibular system of the rat. J Physiol 254:20–21P

    Google Scholar 

  • Renaud LP (1976 b) An electrophysiological study of the amygdalohypothalamic projections to the ventromedial nucleus of the rat. Brain Res 105:45–58

    PubMed  CAS  Google Scholar 

  • Renaud LP (1977) Influence of medial preoptic-anterior hypothalamic area stimulation on the excitability of mediobasal hypothalamic neurons in the rat. J Physiol 264:541–564

    PubMed  CAS  Google Scholar 

  • Renaud LP (1979) Neurophysiology and neuropharmacology of medial hypothalamic neurons and their extrahypothalamic connections. In: Morgane PJ, Panksepp J (eds) Anatomy of the hypothalamus. Dekker, New York, pp 593–693 (Handbook of the hypothalamus, vol 1)

    Google Scholar 

  • Renaud LP, Hopkins DA (1977) Amygdala afferents from the mediobasal hypothalamus: An electrophysiological and neuroanatomical study in the rat. Brain Res 121:201–213

    PubMed  CAS  Google Scholar 

  • Renaud LP, Martin JB (1975) Electrophysiological studies of connections of hypothalamic ventromedial nucleus neurons in the rat: evidence for a role in neuroendocrine regulation. Brain Res 93:145–151

    PubMed  CAS  Google Scholar 

  • Renaud LP, Blume HW, Pittman QJ, Kearney RE, MacKenzie BW (1977) Influence of lateral septum stimulation on the excitability of mediobasal hypothalamic neurons in the rat. Neurosci Abstr 3:204

    Google Scholar 

  • Ricardo JA (1983) Hypothalamic pathways involved in metabolic regulatory functions, as identified by track-tracing methods. In: Szabo AJ (ed) Advances in metabolic disorders, vol 10. Academic, New York

    Google Scholar 

  • Rodgers CH, Schneider VM (1979) Facilitatory influences on mating behavior in the female rat affected by lesions of the habenula or the basolateral amygdaloid regions. Psychoneuroendocrinology 4:237–244

    PubMed  CAS  Google Scholar 

  • Roy E, Lynn D, Clark AS (1985) Inhibition of sexual receptivity by anesthesia during estrogen priming. Brain Res 337:163–166

    PubMed  CAS  Google Scholar 

  • Ruda MT (1976) Autoradiographic study of the efferent projections of the midbrain central gray in the cat. PhD dissertation, University of Pennsylvania

    Google Scholar 

  • Sakuma Y, Pfaff DW (1979) Facilitation of female reproductive behavior from mesencephalic central gray in the rat. Am Physiol Soc 237:R278–R284

    CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1980) Convergent effects of lordosis-relevant somatosensory and hypothalamic influences on central gray cells in the rat mesencephalon. Exp Neurol 70:269–281

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1982) Properties of ventromedial hypothalamic neurons with axons to midbrain central gray. Exp Brain Res 46:292–300

    PubMed  CAS  Google Scholar 

  • Sandrew BB, Poletti CE (1984) Limbic influence on the periaqueductal gray: a single unit study in the awake squirrel monkey. Brain Res 303:77–86

    PubMed  CAS  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442

    PubMed  CAS  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1978) The efferent connections of the anterior hypothalamic area of the rat, cat, and monkey. J Comp Neurol 182:575–600

    PubMed  CAS  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183:689–706

    PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE (1973 a) Autoradiographic localization of radioactivity in the rat brain after the injection of 1,2-3H-testosterone. Endocrinology 92:251–256

    PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE (1973 b) Neurons of the hypothalamus concentrate [3H]progesterone or its metabolites. Science 182:1266–1268

    PubMed  CAS  Google Scholar 

  • Sar M, Stumpf WE (1977) Distribution of androgen target cells in rat forebrain and pituitary after [3H]-dihydrotestosterone administration. J Steroid Biochem 8:1131–1135

    PubMed  CAS  Google Scholar 

  • Schwanzel-Fukuda M, Silverman AJ (1980) The nervus terminalis of the guinea pig: a new luteinizing hormone-releasing hormone (LHRH) neuronal system. J Comp Neurol 191:213–225

    PubMed  CAS  Google Scholar 

  • Selmanoff MK, Brodkin LD, Weiner RI, Suteri PK (1977) Aromatization and 5a-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat. Endocrinology 101:841–848

    PubMed  CAS  Google Scholar 

  • Shaw GL, Harth E, Scheibel AB (1982) Cooperativity in brain function: assemblies of approximately 30 neurons. Exp Neurol 77:324–358

    PubMed  CAS  Google Scholar 

  • Shen CL, Anderson CH (1980) Efferents from the medial anterior hypothalamic area in the guinea pig. Brain Res Bull 5:693–701

    PubMed  CAS  Google Scholar 

  • Sheridan PJ (1979) The nucleus interstitialis striae terminalis and the medial nucleus of the amygdala, prime targets for androgen in the rat forebrain. Endocrinology 104:130–136

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Krey LC (1978) The luteinizing hormone-releasing hormone (LH-RH) neuronal networks of the guinea pig brain. I. Intra-and extra-hypothalamic projections. Brain Res 157:233–246

    Google Scholar 

  • Stumpf WE, Sar M (1975 a) Autoradiographic techniques for localizing steroid hormones. In: O’Malley BW, Hardman JG (eds) Hormone action, part A. Academic, New York, pp 135–156 (Methods in enzymology, vol XXXVI)

    Google Scholar 

  • Stumpf WE, Sar M (1975 b) Hormone-architecture of the mouse brain with UH-estradiol. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 83–103

    Google Scholar 

  • Stumpf WE, Sar M (1976) Steroid hormone target sites in the brain: the differential distribution of estrogen, progestin, androgen, and glucocorticosteroid. J Steroid Biochem 7:1163–1170

    PubMed  CAS  Google Scholar 

  • Stumpf WE, Sar M, Keefer DA (1975) Atlas of estrogen target cells in rat brain. In: Stumpf WE, Grant LD (eds) Anatomical neuroanatomy. Karger, Basel, pp 104–119

    Google Scholar 

  • Sutin J, Eager RP (1969) Fiber degeneration following lesions in the hypothalamic ventromedial nucleus. In: Morgane PJ (ed) Neural regulation of food and water intake. Ann NY Acad Sci 157:610–628

    Google Scholar 

  • Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167:227–256

    PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM (1975 a) A note on the connections and development of the nucleus accumbens. Brain Res 92:324–330

    PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM (1975 b) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160:1–12

    PubMed  CAS  Google Scholar 

  • Swanson LW, Cowan WM (1976) Autoradiographic studies of the development and connections of the septal area in the rat. In: DeFrance JF (ed) The septal nuclei. Plenum, New York, pp 37–64

    Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–656

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci Lett 17:307–312

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kucharczyk J, Mogenson GJ (1978) Autoradiographic evidence for pathways from the medial preoptic area to the midbrain involved in the drinking response to angiotensin IL J Comp Neurol 178:645–659

    PubMed  CAS  Google Scholar 

  • Szentagothai J, Fleko B, Mess B, Halasz B (1968) Hypothalamic control of the anterior pituitary. Akademiai Kiado, Budapest

    Google Scholar 

  • Terasawa E, Sawyer CH (1969) Changes in electrical activity in the rat hypothalamus related to electrochemical stimulation of adenohypophyseal function. Endocrinology 85:143–149

    PubMed  CAS  Google Scholar 

  • Turner BH, Knapp ME (1976) Projections of the nucleus and tracts of the stria terminalis following lesions at the level of the anterior commissure. Exp Neurol 51:468–479

    PubMed  CAS  Google Scholar 

  • Valverde F (1965) Studies on the piriform lobe. Harvard University Press, Cambridge

    Google Scholar 

  • Wade GN, Harding CF, Feder HH (1973) Neural uptake of (1,2 H) progesterone in ovariectomized rats, guinea pigs and hamsters: correlation with species differences in behavioral responsiveness. Brain Res 61:357–364

    PubMed  CAS  Google Scholar 

  • Wakefield C, Hall E (1974) Hypothalamic projections to the amygdala in the cat. Cell Tissue Res 151:499–508

    PubMed  CAS  Google Scholar 

  • Warembourg M (1975 a) Radioautographic study of the rat brain after injection of [1,2-3H]corticosterone. Brain Res 89:61–70

    PubMed  CAS  Google Scholar 

  • Warembourg M (1975 b) Radioautographic study of the rat brain and pituitary after injection of 3H-dexamethasone. Cell Tissue Res 161:183–191

    PubMed  CAS  Google Scholar 

  • Warembourg M (1975 c) Radioautographic study of the brain and pituitary after 3H-progesterone injection into estrogen-primed ovariectomized guinea pigs. Neurosci Lett 7:1–5

    Google Scholar 

  • Warembourg M (1977) Radioautographic study of the brain and pituitary after 3H-progesterone in ovariectomized rats, guinea pigs and hamsters: correlation with species differences in behavioral responsiveness. Brain Res 61:357–364

    Google Scholar 

  • Warembourg M (1979) Uptake of 3H-labeled synthetic progestin by rat brain and pituitary. A radioautography study. Neurosci Lett 9:329–332

    Google Scholar 

  • Whitehead SA, Ruf KB (1974) Responses of antidromically identified preoptic neurons in the rat to neurotransmitters and to estrogen. Brain Res 79:185–198

    PubMed  CAS  Google Scholar 

  • Williams DJ, Crossman AR, Slater P (1977) The efferent projections of the nucleus accumbens in the rat. Brain Res 130:217–227

    PubMed  CAS  Google Scholar 

  • Winans SS, Scalia F (1970) Amygdaloid nucleus: new afferent input from the vomeronasal organ. Science 170:330–332

    PubMed  CAS  Google Scholar 

  • Wolf G, Sutin J (1966) Fiber degeneration after lateral hypothalamic lesions in the rat. J Comp Neurol 127:137–156

    PubMed  CAS  Google Scholar 

  • Yagi K (1970) Effects of estrogen on the unit activity of the rat hypothalamus. J Physiol Soc Jpn 32:692–693

    CAS  Google Scholar 

  • Yagi K (1973) Changes in firing rates of single preoptic and hypothalamic units following an intravenous administration of estrogen in the castrated female rat. Brian Res 53:343–352

    CAS  Google Scholar 

  • Yagi K, Sawaki Y (1973) Feedback of estrogen in the hypothalamic control of gonadotrophin secretion. In: Yagi K, Yoshida S (eds) Neuroendocrine control. University of Tokyo Press, Tokyo, pp 297–325

    Google Scholar 

  • Yagi K, Sawaki Y (1977) Medial preoptic nucleus neurones: inhibition and facilitation of spontaneous activity following stimulation of the median eminence in female rats. Brain Res 120:342–346

    PubMed  CAS  Google Scholar 

  • Yamadori T (1969) Efferent fibers of the habenula and stria medullaris thalami in rats. Exp Neurol 25:541–558

    PubMed  CAS  Google Scholar 

  • Zaborszky L (1982) Afferent connections of the medial basal hypothalamus. In: Hild W, van Limborgh GJ, Ortmann R, Pauly KJE, Schiebler TH (eds) Advances in anatomy, embryology and cell biology, vol 69. Springer, Berlin Heidelberg New York, pp 1–107

    Google Scholar 

  • Zigmond RE, Nottebohm F, Pfaff DW (1973) Androgen-concentrating cells in the midbrain of a songbird. Science 179:1005–1007

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cottingham, S.L., Pfaff, D. (1986). Interconnectedness of Steroid Hormone-Binding Neurons: Existence and Implications. In: Ganten, D., Pfaff, D. (eds) Morphology of Hypothalamus and Its Connections. Current Topics in Neuroendocrinology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71461-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71461-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71463-4

  • Online ISBN: 978-3-642-71461-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics