Skip to main content

Neuroendocrine Projections to the Median Eminence

  • Conference paper
Morphology of Hypothalamus and Its Connections

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 7))

Abstract

Advertisements in the Sunday newspaper boast of how to command your pituitary gland with a simple tablet, but in fact, regulation of anterior pituitary function is the result of complex interactions of cells in the pituitary with hormones from the gland itself, from peripheral target tissues, and from neurons in the central nervous system. Within the brain, neuronal signals are integrated with blood-borne hormonal messages. These are directed to a set of neuroendocrine neurons whose axons extend to the floor of the third ventricle, the median eminence, where they terminate within the perivascular spaces of the primary capillary plexus of the pituitary portal system. The neurohormones are then carried via the portal system to the anterior pituitary where they effect or inhibit release of the pituitary hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ajika K (1979) Simultaneous localization of LHRH and catecholamines in rat hypothalamus. J Anat 128:331–347

    PubMed  CAS  Google Scholar 

  • Amos M, Burgus R, Blackwell R, Vale W, Fellows R, Guillemin R (1971) Purification, amino acid composition and N-terminus of the hypothalamic luteinizing hormone-releasing factor (LRF) of bovine origin. Biochem Biophys Res Commun 44:205–210

    Google Scholar 

  • Badger TM, Millard WJ, McCormick GF, Bowers CY, Martin JB (1984) The effects of growth hormone (GH)-releasing peptides on GH secretion in perfused pituitary cells of adult male rats. Endocrinology 115:1432–1438

    PubMed  CAS  Google Scholar 

  • Barros D’sa AKJ, Bloom SR, Baron JH (1975) Direct inhibition of gastric acid by growth-hormone release-inhibiting hormone in dogs. Lancet 1:886–887

    CAS  Google Scholar 

  • Barry J, Hoffman GE, Wray S (1985) LHRH-containing systems. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 4: GABA and neuropeptides in the CNS. Elsevier, Amsterdam

    Google Scholar 

  • Beck W, Wuttke W (1977) Desensitization of the dopaminergic inhibition of pituitary LH release by prolactin in ovariectomized rats. J Endocrinol 74:67–74

    PubMed  CAS  Google Scholar 

  • Bennett-Clarke C, Joseph SJ (1982) Immunocytochemical distribution of LHRH neurons and processes in the rat: hypothalamic and extrahypothalamic locations. Cell Tissue Res 221:493–504

    PubMed  CAS  Google Scholar 

  • Bennett-Clarke C, Romagnano MA, Joseph SA (1980) Distribution of somatostatin in the rat brain: telencephalon and diencephalon. Brain Res 188:473–486

    PubMed  CAS  Google Scholar 

  • Bishop W, Fawcett CP, Krulich L, McCann SM (1972) Acute and chronic effects of hypothalamic lesions on the release of LH, FSH, and prolactin in intact and castrated rats. Endocrinology 91:643–656

    PubMed  CAS  Google Scholar 

  • Björklund A, Nobin A (1973) Fluorescence histochemical and microspectrofluorimetric mapping of dopamine and noradrenaline cell groups in the rat diencephalon. Brain Res 51:193–205

    PubMed  Google Scholar 

  • Björklund A, Enemar A, Falck B (1968) Monoamines in the hypothalamo-hypophyseal system of the mouse with special reference to the ontogenic aspect. Z Zeilforsch 89:590–607

    Google Scholar 

  • Björklund A, Falck B, Hromek F, Owman C, West KA (1970) Identification and terminal distribution of the tubero-hypophyseal monoamine fibre system in the rat by means of stereotaxic and microspectrofluorimetric techniques. Brain Res 17:1–23

    PubMed  Google Scholar 

  • Björklund A, Moore RY, Nobin A, Stenevi U (1973) The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res 51:171–191

    PubMed  Google Scholar 

  • Blake CA, Weiner RI, Sawyer CH (1972) Pituitary prolactin secretion in female rats made persistently estrous or diestrous by hypothalamic deafferentation. Endocrinology 90:862–866

    PubMed  CAS  Google Scholar 

  • Bloch B, Brazeau P, Ling N, Boehlen P, Esch F, Wehrenberg WB, Benoit R, Bloom F, Guillemin R (1983) Immunohistochemical detection of growth hormone releasing factor in brain. Nature 301:607–608

    PubMed  CAS  Google Scholar 

  • Bloch B, Ling N, Benoit R, Wehrenberg WB, Guillemin R (1984) Specific depletion of immunoreactive growth hormone-releasing factor by monosodium glutamate in rat median eminence. Nature 307:272–273

    PubMed  CAS  Google Scholar 

  • Bloom FE, Battenberg ELF, Rivier J, Vale W (1982) Corticotropin releasing factor (CRF): immunoreactive neurons and fibers in rat hypothalamus. Reg Pept 4:43–48

    CAS  Google Scholar 

  • Bloom SR, Mortimer CH, Thorner MD, Besser GM, Hall R, Gomez-Pan A, Roy VM, Russel RCG, Coy DH, Kastin AJ, Schally AV (1974) Inhibition of gastrin and gastric acid secretion by growth-hormone release-inhibiting hormone. Lancet 2:1106–1109

    PubMed  CAS  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1974) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    Google Scholar 

  • Bresson JL, Clavequin MC, Fellmann D, Bugnon C (1984) Ontogeny of the neuroglandular system revealed with hpGRF44 antibodies in human hypothalamus. Neuroendocrinology 39:68–73

    PubMed  CAS  Google Scholar 

  • Brodish A (1964) Role of the hypothalamus in the regulation of ACTH release. In: Bajusz E, Jasmin G (eds) Major problems in neuroendocrinology. Karger, Basel

    Google Scholar 

  • Brownstein MJ, Palkovits M, Saavedra JM, Bassari RM, Utiger RD (1974) Thyrotropin-releasing hormone in specific nuclei of rat brain. Science 185:267–269

    PubMed  CAS  Google Scholar 

  • Bugnon C, Fellman D, Gouget A, Cardot J (1982) Ontogeny of the corticoliberin neuroglandular system in rat brain. Nature 298:159–161

    PubMed  CAS  Google Scholar 

  • Bugnon C, Gouget A, Fellmann D, Clavequin MC (1983) Immunocytochemical demonstration of a novel peptidergic neuron system in cat brain with an anti-growth hormone-releasing factor serum. Neurosci Lett 38:131–137

    PubMed  CAS  Google Scholar 

  • Bugnon C, Fellmann D, Gouget A, Bresson JL, Clavequin MC, Hadjiyiassemis M, Cardot J (1984) Corticoliberin neurons: Cytophysiology, phylogeny and ontogeny. J Steroid Biochem 20:183–195

    PubMed  CAS  Google Scholar 

  • Burgus R, Dunn TF, Desiderio D, Guillemin R (1969) Structure moléculaire du facteur hypothalamique hypophysiotrope TRF d’origine ovine: mise evidence par spectrometrie de masse de la sequence. CR Acad Sci (D) 269:1870–1893

    CAS  Google Scholar 

  • Carrillo A, Pool TB, Sharp ZD (1985) Vasoactive intestinal peptide increases messenger ribonucleic acid content in GH3 cells. Endocrinology 116:202–206

    PubMed  CAS  Google Scholar 

  • Clemens JA, Shaar CJ, Tandy WA, Roush ME (1971) Effects of hypothalamic Stimulation on prolactin secretion in steroid-treated rats. Endocrinology 89:1317–1319

    PubMed  CAS  Google Scholar 

  • Conrad LCA, Pfaff DW (1976) Efferents from the medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J Comp Neurol 169:221–262

    PubMed  CAS  Google Scholar 

  • Critchlow V, Rice RW, Abe K, Vale W (1978) Somatostatin content of the median eminence in female rats with lesion-induced disruption of the inhibitory control of growth hormone secretion. Endocrinology 103:817–825

    PubMed  CAS  Google Scholar 

  • Cronin MJ, Rogol AD, MacLeod RM, Keefer DA, Login IS, Borges JLC, Thorner MO (1983) Biological activity of a growth hormone-releasing factor secreted by a human tumor. Am J Physiol 244:E346–E353

    PubMed  CAS  Google Scholar 

  • Crowley WR, Terry LC (1980) Biochemical mapping of somatostatinergic systems in rat brain: effects of periventricular hypothalamic and medial basal amygdaloid lesions on stomatostatin-like immunoreactivity in discrete brain nuclei. Brain Res 200:283–291

    PubMed  CAS  Google Scholar 

  • Daikoku S, Matsumura J, Shinokura Y (1976) Efferent projections of the nucleus preopticus medialis to the median eminence in rats. Neuroendocrinology 21:130–138

    PubMed  CAS  Google Scholar 

  • Deuben RR, Meites J (1964) Stimulation of pituitary growth hormone release by a hypothalamic extract in vitro. Endocrinology 74:408–414

    PubMed  CAS  Google Scholar 

  • Dhariwal APS, Grosvenor CE, Antunes-Rodrigues J, McCann SM (1968) Studies on the purification of ovine prolactin-inhibiting factor. Endocrinology 82:1236–1241

    PubMed  CAS  Google Scholar 

  • Don Carlos LL, Ho RA, Berelowitz M, Finkelstein JA (1986) Immunoreactive somatostatin in the hypothalamus of genetically obese and non-obese Zucker rats, (to be published)

    Google Scholar 

  • Dunn JD, Arimura A (1974) Serum growth hormone levels following ablation of the medial basal hypothalamus. Neuroendocrinology 15:189–199

    PubMed  CAS  Google Scholar 

  • Elde R, Hökfelt T, Johansson O, Efendic S, Luft R (1976) Somatostatin containing pathways in the nervous system. Soc Neurosci Abst 11:759

    Google Scholar 

  • Epelbaum J, Willoughby JO, Brazeau P, Martin JB (1977) Effects of brain lesions and hypothalamic deafferentation on somatostatin distribution in the rat brain. Endocrinology 101:1495–1502

    PubMed  CAS  Google Scholar 

  • Esch FS, Boehlen P, Ling NC, Brazeau WB, Thorner MO, Cronin MJ, Guillemin R (1982) Characterization of a 40 residue peptide from a human pancreatic tumor with growth hormone-releasing activity. Biochem Biophys Res Commun 109:152–158

    PubMed  CAS  Google Scholar 

  • Everett JW (1954) Luteotrophic function of autografts of the rat hypophysis. Endocrinology 54:685–690

    PubMed  CAS  Google Scholar 

  • Falck B, Hillarp NA, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Fellmann C, Gouget A, Bugnon C (1983) Mise en envidence d’un nouveau systeme neuronal peptidergique immunoreactif à un immun serum anti-hpGRF 44 dans le cerveau du lerot (Eliomys quercinus). Cr Hebd Seanc Sci Paris Ser III 296:487–492

    Google Scholar 

  • Fink G (1985) Has the prolactin inhibiting peptide at last been found? Nature 316:487–488

    PubMed  CAS  Google Scholar 

  • Finley JCW, Grossman GH, Dimeo P, Petrusz P (1978) Somatostatin-containing neurons in the rat brain: widespread distribution revealed by immunocytochemistry after pretreatment with pronase. Am J Anat 153:483–488

    PubMed  CAS  Google Scholar 

  • Forssmann WG (1978) A new somatostatinergic system in the mammalian spinal cord. Neurosci Lett 10:293–297

    PubMed  CAS  Google Scholar 

  • Fuxe K (1964) Cellular localization of monoamines in the median eminence and the infundibular stem of some mammals. Z Zeilforsch 61:710–724

    CAS  Google Scholar 

  • Fuxe K, Hökfelt T (1969) Catecholamines in the hypothalamus. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology. Oxford University Press, New York

    Google Scholar 

  • Gibbs DM (1984) Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sci 35:487–491

    PubMed  CAS  Google Scholar 

  • Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299:355–357

    PubMed  CAS  Google Scholar 

  • Gomez-Pan A, Albinus M, Reed JJD, Shaw B, Hall R, Besser GM, Coy DH, Kastin AJ, Schally AV (1975) Direct inhibition of gastric acid and pepsin secretion by growth hormone in cats. Lancet 1:888–890

    PubMed  CAS  Google Scholar 

  • Grosz HJ, Rothballer AB (1961) Hypothalamic control of lactogenic function in the cat. Nature 190:349–350

    PubMed  CAS  Google Scholar 

  • Guillemin R, Rosenberg B (1955) Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57:599–607

    PubMed  CAS  Google Scholar 

  • Guillemin R, Brazeau P, Boehlen P, Esch F, Ling N, Wehrenber W (1982) Growth hormone releasing factor from a human pancreatic tumor that caused acromegaly. Science 218:585–587

    PubMed  CAS  Google Scholar 

  • Halasz B, Pupp L, Uhlarik S (1962) Hypophysiotrophic area in the hypothalamus. J Endocrinol 25:147–154

    PubMed  CAS  Google Scholar 

  • Halasz B, Pupp L, Uhlarik S, Tima L (1965) Further studies on the hormone secretion of the anterior pituitary transplanted into the hypophysiotrophic area of the rat hypothalamus. Endocrinology 77:343–355

    PubMed  CAS  Google Scholar 

  • Halasz B, Rethelyi M, Rohlich P, Koritsanszky S, Bodoky M, Nagy L (1979) Recent observations on the structural organization of the rat medial basal hypothalamus. In: Proceedings of the International Symposium on Neuroendocrine Regulatory Mechanisms, vol VI. Scientific Assemblies, Serbian, Academic Scientific Arts, Belgrade

    Google Scholar 

  • Haymaker W, Anderson E, Nauta WJ (1969) The hypothalamus. Thomas, Springfield

    Google Scholar 

  • Hoffman GE (1983) LHRH neurons and their projections. In: Sano Y, Ibata Y, Zimmerman EA (eds) Structure and function of peptidergic and aminergic neurons. Japan Sci, Tokyo

    Google Scholar 

  • Hoffman GE, Finch CE (1986) LHRH neurons in the female C57BL/6J mouse brain during reproductive aging: no loss up to middle age. Neurobiol Aging 7:45–48

    PubMed  CAS  Google Scholar 

  • Hoffman GE, Gibbs FP (1982) Deafferentation spares a subchiasmatic LHRH projection to the median eminence. Neuroscience 8:1979–1993

    Google Scholar 

  • Hoffman GE, Hayes T (1979) Somatostatin neurons and their projections in dog diencephalon. J Comp Neurol 186:371–392

    PubMed  CAS  Google Scholar 

  • Hoffman GE, Sladek JR Jr (1980) Age-related changes in dopamine, LHRH and somatostatin in the rat hypothalamus. Neurobiol Aging 1:27–37

    PubMed  CAS  Google Scholar 

  • Hoffman GE, Melnyk V, Hayes T, Bennett-Clarke C, Fowler E (1978) Immunocytology of LHRH neurons. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interactions, vol 3. Karger, Basel

    Google Scholar 

  • Hoffman GE, Wray S, Goldstein M (1982) Relationship of catecholamines and LHRH: light microscopic study. Brain Res Bull 9:417–430

    PubMed  CAS  Google Scholar 

  • Hökfelt T, Efendic S, Hellerstrom C, Johansson O, Luft L, Arimura A (1975 a) Cellular localization of somatostatin in endocrine-like cells and neurons of the rat with special reference to the A1 cells of the pancreatic islets and to the hypothalamus. Acta Endocrinol 200:5–41

    Google Scholar 

  • Hökfelt T, Fuxe K, Johansson O, Jeffcoate S, White N (1975 b) Distribution of thyrotropin-releasing hormone (TRH) in the central nervous system as revealed with immuno-histochemistry. Eur J Pharmacol 34:389–392

    PubMed  Google Scholar 

  • Hökfelt T, Eide R, Fuxe K, Johansson O, Ljungdahl A, Goldstein M, Luft R, Efendic S, Nilsson G, Terenius L, Ganten D, Jeffcoate SL, Rehfeld R, Said S, Perez de la Mora M, Possani L, Tapia R, Teran L, Palacois R (1978) Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York, pp 69–135

    Google Scholar 

  • Hökfelt T, Fahrenkrug T, Tatemoto K, Mutt V, Werner S, Hulting AL, Terenius L, Chang KJ (1983) The PHI (PHI-27)/corticotropin releasing factor/enkephalin immunoreactive hypothalamic neuron: possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc Natl Acad Sci USA 80:895–898

    PubMed  Google Scholar 

  • Holzwarth-McBride MA, Horst EM, Knigge KM (1976) Monosodium glutamate induced lesions of the arcuate nucleus. I. Endocrine deficiency and ultrastructure of the median eminence. Anat Rec 186:371–392

    Google Scholar 

  • Ibata Y, Watanabe K, Kinoshita H, Kubo S, Sano Y, Sin S, Hashimura E, Imagawa K (1979) The location of LHRH neurons in the rat hypothalamus and their pathways to the median eminence. Cell Tissue Res 198:381–395

    PubMed  CAS  Google Scholar 

  • Ibata Y, Tani N, Obata HL, Tanaka M, Kubo S, Fukui K, Fujimoto M, Kinoshita H, Watanabe K, Sano Y (1981) Correlative ontogenetic development of catecholamine-and LHRH-containing nerve endings in the median eminence of the rat. Cell Tissue Res 216:31–38

    PubMed  CAS  Google Scholar 

  • Ishikawa K, Inoue K, Tosaka H, Shimada O, Suzuki M (1984) Immunohistochemical characterization of thyrotropin-releasing hormone-containing neurons in rat septum. Neuroendocrinology 39:448–452

    PubMed  CAS  Google Scholar 

  • Jackson IMD, Reichlin S (1977) Brain thyrotropin releasing hormone is independent of the hypothalamus. Nature 267:853–854

    PubMed  CAS  Google Scholar 

  • Jacobowitz DM, Schulte H, Chrousos GP, Loriaux DL (1983) Localization of GRF-like immunoreactive neurons in the rat brain. Peptides 4:521–524

    PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE (1980) LHRH-systems in the brain of the golden hamster. Cell Tissue Res 209:239–256

    PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE, Tappaz ML (1983) Anatomical relationships of dopaminergic and GABAergic systems with the GnRH-systems in the septo-hypothalamic area. Exp Brain Res 50:91–99

    PubMed  CAS  Google Scholar 

  • Jennes L, Stumpf WE, Sheedy ME (1985) Ultrastructure of GnRH-like neurons. J Comp Neurol 232:534–546

    PubMed  CAS  Google Scholar 

  • Jonsson G, Fuxe K, Hökfelt T (1972) On the catecholamine innervation of the hypothalamus with special reference to the median eminence. Brain Res 40:271–281

    PubMed  CAS  Google Scholar 

  • Kamberi I A, Mical RS, Porter JC (1971) Effects of anterior pituitary perfusion and intraventricular injection of catecholamines on prolactin release. Endocrinology 88:1012–1020

    PubMed  Google Scholar 

  • Kavanagh A, Weisz J (1973) Localization of dopamine and norepinephrine in the medial basal hypothalamus of the rat. Neuroendocrinology 13:201–212

    PubMed  CAS  Google Scholar 

  • Kawata M, Hashimoto K, Takahara J, Sano Y (1982) Immunohistochemical demonstration of the localization of corticotropin releasing factor-containing neurons in the hypothalamus of mammals including primates. Anat Embryol (Berlin) 165:303–313

    CAS  Google Scholar 

  • King JC, Anthony ELP (1984) LHRH neurons and their projections in humans and other mammals: species comparisons. Peptides 5 (Suppl 1): 195–207

    PubMed  CAS  Google Scholar 

  • King JC, Tobet SA, Snavely FL, Arimura A (1982) LH-RH immunopositive cells and their projections to the median eminence and Organum vasculosum of the lamina terminalis. J Comp Neurol 209:287–300

    PubMed  CAS  Google Scholar 

  • King JC, Anthony ELP, Gustafson AW, Damassa DA (1984) Luteinizing hormone-releasing hormone (LH-RH) cells and their projections in the forebrain of the bat, Myotis lucifugus lucifugus. Brain Res 298:298–301

    Google Scholar 

  • Kiss JZ, Mezey E, Skirboll L (1984) Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc Natl Acad Sci USA 81:1854–1858

    PubMed  CAS  Google Scholar 

  • Kizer JS, Palkovits M, Brownstein M J (1976) The projections of the A8, A9, and A10 dopaminergic cell bodies: evidence for a nigral-hypothalamic-median eminence dopaminergic pathway. Brain Res 108:363–370

    PubMed  CAS  Google Scholar 

  • Koerker D, Ruch W, Chideckel E, Palmer J, Goodner CJ, Ensinck J, Gale CC (1974) Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science 184:482–483

    PubMed  CAS  Google Scholar 

  • Konig JFR, Klippel RA (1963) The rat brain: a stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins, Baltimore

    Google Scholar 

  • Krieger MS, Conrad LCA, Pfaff DW (1979) An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol 183:785–816

    PubMed  CAS  Google Scholar 

  • Krisch B (1978) Hypothalamic and extrahypothalamic distribution of somatostatin-immunoreactive elements in the rat brain. Cell Tissue Res 195:499–513

    PubMed  CAS  Google Scholar 

  • Krisch B, Leonhardt H (1979) Demonstration of a somatostatin-like activity in retinal cells of the rat. Cell Tissue Res 204:127–140

    CAS  Google Scholar 

  • Lechan RM, Jackson IMD (1982) Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111:55–65

    PubMed  CAS  Google Scholar 

  • Lechan RM, Nestler JL, Jacobson S (1980) The hypothalamic “tuberoinfundibular” system of the rat as demonstrated by horseradish peroxidase (HRP) microiontophoresis. Brain Res 195:13–27

    PubMed  CAS  Google Scholar 

  • Lichtensteiger W, Langemann H (1966) Uptake of exogenous catecholamines by monoamine-containing neurons of the central nervous system: uptake of catecholamines by arcuato-infundibular neurons. J Pharmacol Exp Ther 151:400–408

    PubMed  CAS  Google Scholar 

  • Liposits Z, Lengbari I, Vigh S, Schally AV, Flerko B (1983) Immunohistological detection of degenerating CRF-immunoreactive nerve fibers in the median eminence after lesion of paraventricular nucleus of the rat. A light and electron microscopic study. Peptides 4:941–953

    PubMed  CAS  Google Scholar 

  • Liposits Z, Pauli WK, Setalo G, Vigh S (1985) Evidence for local corticotropin releasing factor (CRF)-immunoreactive neuronal circuits in the paraventricular nucleus of the rat hypothalamus. An electron microscopic immunohistochemical analysis. Histochemistry 83:5–16

    PubMed  CAS  Google Scholar 

  • Lu KH, Meites J (1971) Inhibition by I-dopa and monoamine oxidase inhibitors of pituitary prolactin release; stimulation by methyldopa and d-amphetamine. Endocrinology 91:868–872

    Google Scholar 

  • MacLeod RM (1976) Regulation of prolactin secretion. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology. Raven, New York

    Google Scholar 

  • MacLeod RM, Lehmeyer JE (1974) Studies on the mechanism of the dopamine-mediated inhibition of prolactin secretion. Endocrinology 94:1077–1085

    PubMed  CAS  Google Scholar 

  • Makara GB, Stark E, Karteszi M, Palkovits M, Rappay GY (1981) Effects of paraventricular lesions on stimulated ACTH release and CRF in stalk-median eminence of the rat. Am J Physiol 240:E441–E446

    PubMed  CAS  Google Scholar 

  • Marshall PE, Goldsmith PC (1980) Neuroregulatory and neuroendocrine GnRH pathways in the hypothalamus and forebrain of the baboon. Brain Res 193:353–372

    PubMed  CAS  Google Scholar 

  • Martin JB, Reichlin S (1972) Plasma thyrotropin (TSH) response to hypothalamic electrical stimulation and to injection of synthetic thyrotropin releasing hormone (TRH). Endocrinology 90:1079–1085

    PubMed  CAS  Google Scholar 

  • Martin JB, Brazeau P, Tannenbaum GS, Willoughby JO, Epelbaum J, Terry LC, Durand D (1978) Neuroendocrine organization of growth hormone regulation. In: Reichlin S, Baldessarini RJ, Martin JB (eds) The hypothalamus. Raven, New York

    Google Scholar 

  • Matsuo H, Baba Y, Nair R, Arimura A, Schally AV (1971) Structure of the porcine LH-and FSH-releasing hormone. I. The proposed amino acid sequence. Biochem Biophys Res Commun 43:1334–1339

    PubMed  CAS  Google Scholar 

  • McNeill TH, Sladek JR Jr (1978) Fluorescence-immunocytochemistry: simultaneous localization of catecholamines and gonadotropin-releasing hormone. Science 200:72–74

    PubMed  CAS  Google Scholar 

  • McNeill TH, Scott DE, Sladek JR Jr (1980) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry. I. Localization of catecholamines and gonadotropin-releasing hormone in the rat median eminence. Peptides 1:59–68

    PubMed  CAS  Google Scholar 

  • Merchenthaler I, Vigh S, Petrusz P, Schally AV (1982) Immunocytochemical localization of corticotropin releasing factor (CRF) in the rat brain. Am J Anat 165:385–396

    PubMed  CAS  Google Scholar 

  • Merchenthaler I, Vigh S, Petrusz P, Schally AV (1983) The paraventriculo-infundibular corticotropin releasing factor (CRF) pathway as revealed by immunocytochemistry in long term hypophysectomized or adrenalectomized rats. Regul Pept 5:295–305

    PubMed  CAS  Google Scholar 

  • Merchenthaler I, Thomas CR, Arimura A (1984 a) Immunocytochemical localization of growth hormone releasing factor (GHRF)-containing structures in the rat brain using anti-rat GHRF serum. Peptides 5:1017–1019

    Google Scholar 

  • Merchenthaler I, Vigh S, Schally AV, Petrusz P (1984 b) Immunocytochemical localization of growth hormone-releasing factor in the rat hypothalamus. Endocrinology 114:1082–1085

    PubMed  CAS  Google Scholar 

  • Mezey E, Kiss JZ (1985) Vasoactive intestinal peptide-containing neurons in the paraventricular nucleus may participate in regulating prolactin secretion. Proc Natl Acad Sci USA 82:245–247

    PubMed  CAS  Google Scholar 

  • Millard WJ, Martin JB Jr, Audet J, Sagar SM, Martin JB (1982) Evidence that reduced growth hormone secretion observed in monosodium glutamate-treated rats in the result of a deficiency in growth hormone-releasing factor. Endocrinology 110:540–550

    PubMed  CAS  Google Scholar 

  • Neill JD (1980) Neuroendocrine regulation of prolactin secretion. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Raven, New York

    Google Scholar 

  • Nikitovitch-Winer MB (1965) Effect of hypophysial stalk transection on luteotropic hormone secretion in the rat. Endocrinology 77:658–666

    PubMed  CAS  Google Scholar 

  • Nikitovitch-Winer M, Everett J (1958) Functional restitution of pituitary grafts retrans-planted from kidney to median eminence. Endocrinology 63:916–930

    PubMed  CAS  Google Scholar 

  • Nikitovitch-Winer M, Everett J (1959) Histocytologic changes in grafts of rat pituitary on the kidney and upon re-transplantation under the diencephalon. Endocrinology 65:357–368

    PubMed  CAS  Google Scholar 

  • Nikolics K, Mason AJ, Szonyi E, Ramachandran J, Seeburg PH (1985) A prolactin-inhibiting factor within the precursor for human gonadotropin-releasing hormone. Nature 316:511–517

    PubMed  CAS  Google Scholar 

  • Olschowka JA, D’Donahue TL, Mueller GP, Jacobowitz DM (1982) Hypothalamic and extrahypothalamic distribution of CRF-like immunoreactive neurons in the rat brain. Neuroendocrinology 35:305–308

    PubMed  CAS  Google Scholar 

  • Palkovits M (1977) Neural pathways involved in ACTH regulation. Ann NY Acad Sci 297:455–476

    PubMed  CAS  Google Scholar 

  • Palkovits M, Brownstein MJ (1985) Distribution of neuropeptides in the central nervous system using biochemical micromethods. 2.2 Thyrotropin releasing hormone. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 4: GAB A and neuropeptides in the CNS. Elsevier, Amsterdam

    Google Scholar 

  • Palkovits M, Saavedra JM, Jacobowitz DM, Kizer JS, Zaborsky L, Brownstein MJ (1977) Serotonergic innervation of the forebrain: effect of lesions on serotonin and tryptophan hydroxylase levels. Brain Res 130:121–134

    PubMed  CAS  Google Scholar 

  • Palkovits M, Mezey E, Zaborsky L, Feminger A, Versteeg DHG, Wijnen HLJM, DeJong W, Fekete MIK, Herman JP, Kanyicska B (1980 a) Adrenergic innervation of the rat hypothalamus. Neurosci Lett 18:237–243

    PubMed  CAS  Google Scholar 

  • Palkovits M, Zaborsky L, Feminger A (1980 b) Noradrenergic innervation of the rat hypothalamus: experimental biochemical and electron microscopic studies. Brain Res 191:160–171

    Google Scholar 

  • Paull WK, Scholer J, Arimura A, Meyers CA, Chang J, Chang D, Shimizu M (1982) Immunocytochemical localization of CRF in the ovine hypothalamus. Peptides 1:183–191

    Google Scholar 

  • Phelps CJ, Hoffman GE (1986) Immunocytochemical localization of growth hormone releasing factor in normal and dwarf mouse brain. Endocrinology 118 (Suppl):396 (abstract)

    Google Scholar 

  • Phelps CJ, Hymer WC (1986) Pituitary lactotroph sedimentation profiles and in vitro secretory activity after ablation of the medial hypothalamus. Anat Rec 215:365–373

    PubMed  CAS  Google Scholar 

  • Richoux JP, Dubois MP (1980) Neuronal systems immunologically related to the somatostatin system in the garden dormouse. Cell Tissue Res 209:455–472

    PubMed  CAS  Google Scholar 

  • Rivier C, Vale W (1984) Interaction of corticotropin releasing factor (CRF) and arginine vasopressin (AVP) on ACTH secretion in vivo. Endocrinology 113:939–942

    Google Scholar 

  • Rivier J, Spiess J, Thorner MO, Vale W (1982) Characterization of a growth hormone-releasing factor from a human pancreatic islet tumor. Nature 30:276–278

    Google Scholar 

  • Rivier C, Rivier J, Mormede P, Vale W (1984) Studies of the nature of the interaction between vasopressin and corticotropin releasing factor on adrenocorticotropin release in the rat. Endocrinology 115:882–886

    PubMed  CAS  Google Scholar 

  • Roth KA, Weber E, Barchas JD (1982) Immunoreactive corticotropin releasing factor (CRF) and vasopressin are colocalized in a subpopulation of the immunoreactive vasopressin cells in the paraventricular nucleus of the hypothalamus. Life Sci 31:1857–1860

    PubMed  CAS  Google Scholar 

  • Roth KA, Weber E, Barchas JD, Chang D, Chang J-K (1983) Immunoreactive dynorphin-(1–8) and corticotropin-releasing factor in subpopulation of hypothalamic neurons. Science 219:189–190

    PubMed  CAS  Google Scholar 

  • Saffran M, Schally AV (1955) The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol 33:408–415

    PubMed  CAS  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1978) The efferent connections of the anterior hypothalamic areas of the rat, cat and monkey. J Comp Neurol 183:575–600

    Google Scholar 

  • Sarkar DK, Gottschall PE, Meites J (1981) Damage to hypothalamic dopamine neurons is associated with development of prolactin-secreting tumors. Science 218:684–686

    Google Scholar 

  • Sawchenko P, Swanson LW, Vale W (1984 a) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci USA 81:1883–1887

    PubMed  CAS  Google Scholar 

  • Sawchenko P, Swanson LW, Vale W (1984 b) Corticotropin releasing factor: coexpression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat. J Neurosci 4:1118–1129

    PubMed  CAS  Google Scholar 

  • Schafer MK-H, Burke S, Sherman TG, Watson SJ (1985) Co-existence of opioid peptides with oxytocin and vasopressin in the rat hypothalamic magnocellular nuclei. International Narcotic Res Conference Abst 133:47

    Google Scholar 

  • Schally AV, Meites J, Bowers CY, Ratner R (1964) Identity of prolactin inhibitory factor (PIF) and luteinizing hormone-releasing factor (LRF). Proc Soc Exp Biol Med 117:252–254

    PubMed  CAS  Google Scholar 

  • Schally AV, Redding TW, Bowers CY, Barrett JF (1969) Isolation and properties of porcine thyrotropin-releasing hormone. J Biol Chem 244:4077–4088

    PubMed  CAS  Google Scholar 

  • Scott PM, Knigge KM (1981) Immunocytochemistry of luteinizing hormone-releasing hormone, vasopressin and corticotropin following deafferentation of the basal hypothalamus of the male rat brain. Cell Tissue Res 219:393–402

    PubMed  CAS  Google Scholar 

  • Seifert H, Perrin M, Rivier J, Vale W (1985) Binding sites for growth hormone releasing factor on rat anterior pituitary cells. Nature 313:487–488

    PubMed  CAS  Google Scholar 

  • Selmanoff M (1981) The lateral and medial median eminence: distribution of dopamine, norepinephrine, and luteinizing hormone-releasing hormone and the effect of prolactin on catecholamine turnover. Endocrinology 108:1716–1722

    PubMed  CAS  Google Scholar 

  • Silverman AJ, Renaud L (1985) Which LHRH neurons project to the median eminence: a combined retrograde tracing and immunocytochemical analysis. Soc Neurosci Abst 11:20

    Google Scholar 

  • Silverman AJ, Antunes JL, Abrams GM, Nilaver G, Thau R, Robinson JA, Ferin M, Krey LC (1982) The luteinizing hormone-releasing hormone pathways in rhesus (Macaca mulatta) and pigtailed (Macaca nemestrina) monkeys: new observations on thick, un-embedded sections. J Comp Neurol 211:309–317

    PubMed  CAS  Google Scholar 

  • Sladek JR Jr, Sladek CD, McNeill TH, Wood JG (1978) New sites of monoamine localization in the endocrine hypothalamus as revealed by new methodological approaches. In: Scott DE, Kozlowski GP, Weindl A (eds) Brain-endocrine interactions III. Neural hormones and reproduction, 3rd Int Symp, Würzburg, Karger, Basel

    Google Scholar 

  • Smith GC, Fink G (1972) Experimental studies on the origin of monoamine-containing fibres in the hypothalamo-hypophyseal complex of the rat. Brain Res 43:37–51

    PubMed  CAS  Google Scholar 

  • Smith PE (1927) The disabilities caused by hypophysectomy and their repair. J Am Med Assoc 88:158–161

    CAS  Google Scholar 

  • Sofroniew MV (1985) Vasopressin, oxytocin and their related neurophysins. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 4: GAB A and neuropeptides in the CNS. Elsevier, Amsterdam

    Google Scholar 

  • Soper BD, Weick RF (1980) Hypothalamic and extrahypothalamic mediation of pulsatile discharages of luteinizing hormone in the ovariectomized rat. Endocrinology 106:348–355

    PubMed  CAS  Google Scholar 

  • Spiess J, Rivier J, Thorner MO, Vale W (1982) Sequence analysis of a growth hormone releasing factor from a human pancreatic islet tumor. Biochemistry 21:6037–6040

    PubMed  CAS  Google Scholar 

  • Spiess J, Rivier J, Vale W (1983) Characterization of rat hypothalamic growth hormone releasing factor. Nature 303:532–535

    PubMed  CAS  Google Scholar 

  • Stillman MA, Recht LD, Rosario SL, Seif SM, Robinson AG, Zimmerman EA (1977) The effect of adrenalectomy and glucocorticoid replacement on vasopressin and vasopressin-neurophysin in the zona externa of the median eminence of the rat. Endocrinology 101:42–49

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers JM (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex and spinal cord, as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194:555–570

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko P, Wiegand S J, Price JL (1980) Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Res 198:190–195

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale W (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36:165–186

    PubMed  CAS  Google Scholar 

  • Szentagothai J (1964) The parvocellular neurosecretory system. Prog Brain Res 5:135–146

    Google Scholar 

  • Takatsuke K, Shiosada S, Dakanaka M, Inagaki S, Senba E, Takagi H, Tohyama M (1981) Somatostatin in the auditory system of the rat. Brain Res 213:211–216

    Google Scholar 

  • Terasawa E, Davis GA (1983) The LHRH neuronal system in female rats: relation to the medial preoptic nucleus. Endocrinol Jpn 30:405–417

    PubMed  CAS  Google Scholar 

  • Thorner MO, Flückinger E, Caine DB (1980) Bromocriptine: a clinical and pharmacological review. Raven, New York

    Google Scholar 

  • Thorner MO, Perryman RL, Cronin MJ, Rogol AD, Draznin M, Johanson A, Vale W, Horvath E, Kovacs K (1982) Successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone-releasing factor. J Clin Invest 70:965–977

    PubMed  CAS  Google Scholar 

  • Thorner MO, Rivier J, Spiess JL, Borges J, Vance ML, Bloom SR, Rogol AD, Cronin MJ, Kaiser DL, Evans WS, Webster RM, MacLeod FM, Vale W (1983) Human pancreatic growth-hormone-releasing factor selectively stimulates growth-hormone secretion in man. Lancet 1:24

    PubMed  CAS  Google Scholar 

  • Tilders F, Tatemoto K, Berkenbosch F (1984) The intestinal peptide PHI-27 potentiates the action of corticotropin-releasing factor on ACTH release from rat pituitary fragments in vitro. Endocrinology 115:1633–1635

    PubMed  CAS  Google Scholar 

  • Tixier-Vidal A, Gourdji D (1981) Mechanism of action of synthetic hypothalamic peptides on anterior pituitary cells. Physiol Rev 61:974–1011

    PubMed  CAS  Google Scholar 

  • Tramu G, Croix C, Pillez A (1983) Ability of the CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material. Neuroendocrinology 37:467–469

    PubMed  CAS  Google Scholar 

  • Turpen C, Dunn JD (1976) The effect of surgical isolation or ablation of the medial basal hypothalamus on serum prolactin levels in male rats. Neuroendocrinology 20:224–234

    PubMed  CAS  Google Scholar 

  • Turpen C, Sladek JR Jr (1978) Localization of glyoxylic acid-induced histofluorescence in surgically isolated medial basal hypothalamus. Cell Tissue Res 187:449–456

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier C, Brazeau P, Guillemin R (1974) Effects of somatostatin on the secretion of thyrotropin and prolactin. Endocrinology 95:968–977

    PubMed  CAS  Google Scholar 

  • Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and B-endorphin. Science 213:1394–1397

    PubMed  CAS  Google Scholar 

  • Vale W, Rivier C, Brown MR, Spiess J, Koob G, Swanson L, Binezikjian L, Bloom F, Rivier J (1983) Chemical and biological characterization of corticotropin releasing factor. Recent Prog Horm Res 39:245–270

    PubMed  CAS  Google Scholar 

  • Vijanian E, Samson W, Said S, McCann SM (1979) Vasoactive intestinal polypeptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone and prolactin in conscious ovariectomized rats. Endocrinology 104:53–57

    Google Scholar 

  • Watson RE, Wiegand SJ, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain longterm peptide immunoreactivity and tissue morphology. Peptides 7:155–159

    PubMed  CAS  Google Scholar 

  • Watson SJ, Richard CW, Barchas JD (1978) Adrenocorticotropin in rat brain: immunocytochemical localization in cells and axons. Science 200:1180–1182

    PubMed  CAS  Google Scholar 

  • Weiner RI, Shryne JE, Gorski RA, Sawyer CH (1972) Changes in the catecholamine content of the rat hypothalamus following deafferentation. Endocrinology 90:867–873

    PubMed  CAS  Google Scholar 

  • Whitnall MH, Mezey E, Gainer H (1985) Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317:248–250

    PubMed  CAS  Google Scholar 

  • Wiegand SJ, Price JL (1980) Cells of origin of the afferent fibers to the median eminence. J Comp Neurol 192:1–19

    PubMed  CAS  Google Scholar 

  • Wiegand SJ, Terasawa E (1978) Persistent estrus and blockade of progesterone induced LH release follows lesions which do not damage the suprachiasmatic nucleus. Endocrinology 102:1645–1648

    PubMed  CAS  Google Scholar 

  • Wiegand SJ, Watson RE, Hoffman GE, Tang L (1985) Differential effects of lesions of the LHRH system or the medial preoptic nucleus (MPN) on phasic gonadotropin release in the rat. Biol Reprod 32 [Suppl 1]:110

    Google Scholar 

  • Winokur A, Utiger RD (1974) Thyrotropin-releasing hormone: regional distribution in rat brain. Science 185:265–266

    PubMed  CAS  Google Scholar 

  • Wolfson B, Manning RW, Davis LG, Arentzen R, Baldino F (1985) Co-localization of corticotropin releasing factor and vasopressin mRNA in neurons after adrenalectomy. Nature 315:59–61

    PubMed  CAS  Google Scholar 

  • Wray S, Hoffman GE (1986) Postnatal morphological changes in rat LHRH neurons correlated with sexual maturation. Neuroendocrinology 43:93–97

    PubMed  CAS  Google Scholar 

  • Zaborszky L (1982) Afferent connections of the medial basal hypothalamus. Adv Anat Embryol Cell Biol 69:1–107

    PubMed  CAS  Google Scholar 

  • Zimmerman EA, Liotta A, Krieger DT (1978) β-lipotropin in brain: localization in hypothalamic neurons by immunoperoxidase technique. Cell Tissue Res 186:393–398

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffman, G.E., Phelps, C.J., Khachaturian, H., Sladek, J.R. (1986). Neuroendocrine Projections to the Median Eminence. In: Ganten, D., Pfaff, D. (eds) Morphology of Hypothalamus and Its Connections. Current Topics in Neuroendocrinology, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71461-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71461-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71463-4

  • Online ISBN: 978-3-642-71461-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics