Tunnel Currents and Electron Tunnelling Times in Semiconductor Heterostructure Barriers in the Presence of an Applied Magnetic Field

  • L. Eaves
  • K. W. H. Stevens
  • F. W. Sheard
Part of the Springer Proceedings in Physics book series (SPPHY, volume 13)


The effect of transverse magnetic fields up to 11.5 T on the tunnel current in GaAs/(AlGa)As/GaAs heterostructure barriers is reported. The decrease of the tunnel current with increasing field is shown to arise from an increase in effective barrier height due to the diamagnetic energy. The results are used to test the effective mass and WKB approximations which are generally used to describe tunnelling effects in semiconductors. Recent calculations of barrier traversal times are briefly reviewed. Two of these theoretical models are used to calculate the effect of applied magnetic and electric fields on the barrier traversal time.


Tunnel Current Transverse Magnetic Field Magnetic Vector Potential Reverse Bias Voltage Parallel Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Esaki: In Proceedings of the 17th International Conference on the Physics of Semiconductors, ed. by J.D. Chadi, W.A. Harrison ( Springer, New York 1985 ) pp. 473–483Google Scholar
  2. 2.
    T.C.L.G. Sollner, P.E. Tannenwald, D.C. Peck, W.D. Goodhue: Appl. Phys. Lett. 45, 1319 (1984).CrossRefGoogle Scholar
  3. 3.
    M. Heilblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler: Phys. Rev. Lett. 55, 2200 (1985)CrossRefGoogle Scholar
  4. 4.
    A.R. Bonnefoi, D.H. Chow, T.C. McGill: Appl. Phys. Lett. 47, 888 (1985)CrossRefGoogle Scholar
  5. 5.
    D.C. Taylor, P.S.S. Guimaraes, B.R. Snell, F.W. Sheard, L. Eaves, G.A. Toombs, J.C. Portal, L. Dmowski, K.E. Singer, G. Hill, M.A. Pate: In Proceedings of the International Conference on Modulated Semiconductor Structures, to appear in Surface Sci. (Kyoto 1986)Google Scholar
  6. 6.
    P.S.S. Guimaraes, D.C. Taylor, B.R. Snell, L. Eaves, K.E. Singer, G. Hill, M.A. Pate, G.A. Toombs, F.W. Sheard: J. Phys. C. Solid State Phys. 18, L605 –609 (1985)CrossRefGoogle Scholar
  7. 7.
    L. Eaves, P.S.S. Guimaraes, F.W. Sheard, B.R. Snell, D.C. Taylor, G.A. Toombs, K.E. Singer: J. Phys. C: Solid State Phys. J 8, L885–9 (1985)CrossRefGoogle Scholar
  8. 8.
    L. Eaves, P.S.S. Guimaraes, B.R. Snell, D.C. Taylor, K.E. Singer: Phys. Rev. Lett. 53, 262 (1985)CrossRefGoogle Scholar
  9. 9.
    L. Eaves, D.C. Taylor, J.C. Portal, L. Dmowski: In Proceedings of the 4th International Winter School on Two–Dimensional Systems, Mauterndorf, Austria 1986 (to be published by Springer, Berlin, Heidelberg)Google Scholar
  10. 10.
    L. Eaves, P.S.S. Guimaraes, B.R. Snell, F.W. Sheard, D.C. Taylor, G.A. Toombs, J.C. Portal, L. Dmowski, K.E. Singer, G. Hill, M.A. Pate: to be published in Microstructures and Superlattices (1986)Google Scholar
  11. 11.
    K.W.H. Stevens: Eur. J. Phys. 1, 98 (1980)CrossRefGoogle Scholar
  12. 12.
    K.W.H. Stevens: J. Phys. C: Solid State Phys. C-16, 3649 (1983)Google Scholar
  13. 13.
    M. Buttiker, R. Landauer: Phys. Rev. Lett. 49, 1739 (1982)CrossRefGoogle Scholar
  14. 14.
    M. Buttiker, R. Landauer: Proceedings of the Europhysics Study Conference on Tunnelling at Low Temperatures (Leuven 1985 ) pp. 5–7Google Scholar
  15. 15.
    J.R. Barker: Physica B134, 22 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • L. Eaves
    • 1
  • K. W. H. Stevens
    • 1
  • F. W. Sheard
    • 1
  1. 1.Department of PhysicsUniversity of NottinghamNottinghamUK

Personalised recommendations