Electron States in Semiconductor Microstructures

  • M. Jaros
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 13)


The particle-in-a-box model of confinement pictured in Fig.1 accounts for the presence and approximate positions of levels in GaAs wells confined by Ga1−xAlxAs (x < 0.35). The only parameters required are the effective mass derived from the relevant band edge, the well width and the barrier height. In this model, it is assumed that the rapidly varying component un \(\vec k\left( {\vec r} \right)\) of the total wave function does not change at the interfaces, i.e. that near the band edges the Bloch functions associated with a given band n and wave vector \(\vec k\) are the same in GaAs and Ga1−xAlxAs. Although a number of corrections has been introduced to improve the accuracy and scope of predictions based on this simple picture, it is clear that at least further from the band edges, and in structures consisting of more dissimilar materials, the above approximation will break down.


Recombination GaAs Kelly Zucker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando,A.B. Fowler, F. Stern: Rev. Mod. Phys. 53, 437 (1982)Google Scholar
  2. 2.
    M. Jaros: Rep. Proqr. Phys. 48, 1091 (1985)CrossRefGoogle Scholar
  3. 3.
    M. Altarelli: Phys. Rev. B28, 842 (1983)CrossRefGoogle Scholar
  4. 4.
    M. Jaros: Deep Levels in Semiconductors ( Hilger, Bristol 1982 )Google Scholar
  5. 5.
    M.J. Kirton, P.W. Banks, D.I. Lu, M. Jaros: J. Phys. C17, 2487 (1984)Google Scholar
  6. 6.
    W. Andreoni, R. Carr: Phys. Rev. B21, 3334 (1980)CrossRefGoogle Scholar
  7. 7.
    J.E. Zucker, A. Pinczuk, D.S. Chemla, A. Gossard, W. Wiegmann: Phys. Rev. B29, 7065 (1984)CrossRefGoogle Scholar
  8. 8.
    G. Bastard, U.O. Ziemeiis, C. Delalande, M. Boos, A.C. Gossard, W. Wiegmann: Solid State Commun. 49, 671 (1984)CrossRefGoogle Scholar
  9. 9.
    Y.C. Chang, N. Schulman: Phys. Rev. B31, 2069 (1985)CrossRefGoogle Scholar
  10. 10.
    F. Capasso, S.Luigi, W.T. Tsang, C.G. Bethea, B.F. Levine: Phys. Rev. Lett. 51, 2318 (1983)CrossRefGoogle Scholar
  11. 11.
    M. Jaros, K.B. Wong, M.A. Gell: Phys. Rev. B31, 1205 (1985); M. Jaros, K.B. Wong, M.A. Gell, D. J. Wolford: J. Vac. Sci. Technol. B3, 1051 (1985)Google Scholar
  12. 12.
    G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki: Phys. Rev. B28, 3241 (1983)CrossRefGoogle Scholar
  13. 13.
    E.J. Austin, M. Jaros: Phys. Rev. B31, 5569 (1985); E.J. Austin, M. Jaros: Appl. Phys. Lett. 47, 274 (1985)Google Scholar
  14. 14.
    G.C. Osbourn: J. Appl. Phys. 53, 1586 (1982)CrossRefGoogle Scholar
  15. 15.
    J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakshara, I.K. Robinson: J. Vac. Sci. Technol. A2 (2), 436 (1984)CrossRefGoogle Scholar
  16. 16.
    F. Cerdeira, A. Pinczuk, J.C. Bean: Phys. Rev. B31, 1202 (1985)CrossRefGoogle Scholar
  17. 17.
    G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, H.J. Herzog: Phys. Rev. Lett. 54, 2441 (1985)CrossRefGoogle Scholar
  18. 18.
    D. Ninno, K.B. Wong, M.A. Gell, M. Jaros: Phys. Rev. B32, 1586 (1985)Google Scholar
  19. 19.
    I. Morrison, M. Jaros, K.B. Wong: J. Phys. C (in press) (1986)Google Scholar
  20. 20.
    R. Dingle: Festkörperprobleme 15, 21 (1975)CrossRefGoogle Scholar
  21. 21.
    D.J. Wolford, T.F. Kuech, J.A. Bradley, M.A. Gell, D. Ninno, M. Jaros: J. Vac. Sci. Technol. (in press) (1986)Google Scholar
  22. 22.
    P.G. Dawson, G. Duggan, H.I. Ralph, K. Woodbridge, G.W. Hooft: Superlattices Microstruct. 1, 231 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. Jaros
    • 1
  1. 1.Department of Theoretical PhysicsThe UniversityNewcastle upon TyneUK

Personalised recommendations