Skip to main content

Wake-Shear Layer Interaction and the Onset of Turbulence Behind a Circular Cylinder

  • Conference paper
Turbulent Shear Flows 5
  • 571 Accesses

Abstract

The formation zone of the large regular vortices of the wake of a circular cylinder (0 < X/D < 3) in the subcriticai regime (2,400 < Re D < 60,000) is studied with and without the introduction of a splitter plate. Spectral properties are used to describe the different stages of the interaction between shear layer vortices and alternating ones. Some physical properties of this interaction, emerging from a numerical simulation using a pressure-velocity formulation, are examined separately. Both unexcited and excited 2D-plane mixing layers are studied using streakline maps and time traces of the dynamical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

b):

Shear layer width (distance 0.95 U 1 and 1.05 U 2)

b 0):

Numerical reference length

D):

Diameter of the cylinder

f):

Frequency

fs):

Vortex shedding frequency

ft):

Shear layer frequency

ff):

Forcing frequency

df):

Frequency resolution (sampling frequency/number of points)

Puu(f)):

Discrete power spectrum of velocity

P0):

Total power of the signal \( \mathop{\smallint }\limits_{{ - \infty }}^{{ + \infty }} {P_{{uu}}}\left( f \right)df \)

R):

=(U1 - U2)/(U1 + U2): velocity ratio

Re D ):

=(U0*D)/v: wake Reynolds number

Re b ):

=U1*b0/v: shear layer Reynolds number

St D ):

=f s *D/U 0 : wake Strouhal number

T):

Numerical time value

U 0):

External uniform velocity

Um):

=(U1+U2)/2: shear layer reference velocity

U 1):

(resp. U 2 ) External higher (lower) velocity

X, Y):

Geometrical position

α):

Non integer coefficient

v):

Kinematic viscosity

References

  1. Roshko, A. (1954): On the development of turbulent wakes from vortex streets. N.A.C.A. Report 1191

    Google Scholar 

  2. Sreenivasan, K. R. (1985): “Transition to Turbulence in Fluid Flows and Low-Dimensional Chaos,” in Frontiers in Fluid Mechanis, ed. by S. H. Davis, J. L. Lumley, (Springer, Berlin, Heidelberg) pp. 41–67

    Google Scholar 

  3. Braza, M. (1981): “Simulation Numérique du décollement Instationnaire Externe par une Formulation Vitesse-Pression, Application à l’écoulement autour du cylindre;” Thèse de Docteur-Ingénieur, I.N.P., Toulouse, No. 182

    Google Scholar 

  4. Braza, M., Ha Minh, H., Chassaing, P. (1984): “Numerical Simulation of the Vortex Shedding Past a Circular Cylinder Using a Pressure-Velocity Formulation,” in Numerical Methods for Transient and Complex Problems (Pineridge Press)

    Google Scholar 

  5. Braza, M., Chassaing, P., Ha Minh, H. (1985): “Numerical Study of Different Scale Structures in the Near Wake of a Circular Cylinder in Laminar to Turbulent Transition,” in Numerical Methods in Laminar and Turbulent Flow (Pineridge Press)

    Google Scholar 

  6. Bloor, M. S. (1964): The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. Vol. 19, Part 2, 290–304

    Article  ADS  MATH  Google Scholar 

  7. Bloor, M. S., Gerrard, J. H. (1966): “Measurements on Turbulent Vortices in a Cylinder Wake.” Proceedings of Royal Society, Serie A, pp. 319–342

    Google Scholar 

  8. Crausse, E. (1936): “Contribution Expérimentale à l’étude des Phénomènes Transitoires et Périodiques se produisant dans les Lignes en Mouvement;” Thèse de Doctorat ès Sciences, Université de Toulouse

    Google Scholar 

  9. Domptail, C. (1979): “Sillage Turbulent en aval de deux Barreaux parallèles en Tunnel Hydrodynamique: Visualisation et Vélocimétrie Laser;” Thèse de 3e Cycle, Université d’AIX-Marseille II

    Google Scholar 

  10. Boisson, H. C., Chassaing, P., Ha Minh, H. (1983): Conditional analysis of intermittency in the near wake of a circular cylinder. Phys. Fluids 26, 653–658

    Article  ADS  Google Scholar 

  11. Kourta, A., Boisson, H. C., Chassaing, P., Ha Minh, H. (1984): “Transition to Turbulence in the Wake of a Circular Cylinder by Interaction Between Shear Layers and a Vortex Street,” Fifth Physico-Chemical Hydrodynamics Conference, Tel-Aviv

    Google Scholar 

  12. Stansby, P. K. (1974): The effect of end plates on the base pressure coefficient of a circular cylinder. Aeronaut. J. 36–37

    Google Scholar 

  13. West, G. S., Apelt, C. J. (1982): The effects of tunnel blockage and aspect ratio on the mean flow past a circular cylinder in the range 104 < Re < 105. J. Fluid Mech. 114, 361–371

    Article  ADS  Google Scholar 

  14. Kim, Y. C., Khadra, L., Powers, E. J. (1980): Wave modulation in a non linear dispersive medium. Phys. Fluids 28, 2250–2257

    Article  ADS  Google Scholar 

  15. Miksad, R. W., Jones, F. L., Powers, E. J., Kim, Y. C., Khadra, L. (1982): Experiments on the role of amplitude and phase modulations during the transition to turbulence. J. Fluid Mech. 123, 1–29

    Article  ADS  Google Scholar 

  16. Motohashi, T. (1979): A Higher-order non-linear interaction among spectral components. Phys. Fluids 22, 1212–1213

    Article  ADS  Google Scholar 

  17. Roshko, A. (1955): On the wake and drag of bluff bodies. J. Aeronaut. Sci. 22, 124–132

    MATH  Google Scholar 

  18. Bearman P. W. (1965): Investigation of the flow behind a two-dimensional model with blunt trailing edge and fitted with splitters plates. J. Fluid Mech. 21, 241 – 255

    Article  ADS  MATH  Google Scholar 

  19. Apelt, J., West, G. S., Szewczyk, A. A. (1973): The effects of wake sputter plate on the flow past a circular cylinder in the range 104 < Re < 5.105. J. Fluid Mech. 61, 187–198

    Article  ADS  Google Scholar 

  20. West, G. S., Boisson, H. C., Kourta, A. (1985): Influence d’une plaque de recollement sur les propriétés spectrales de l’écoulement autour d’un cylindre circulaire en régime subcritique. IMF-Toulouse, Report No. 48

    Google Scholar 

  21. Ho, C. M., Huerre, P. (1984): Perturbed free shear layers. Ann. Rev. Fluid Mech. 16, 365–424

    Article  ADS  Google Scholar 

  22. Chorin, A. J. (1967): A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26

    Article  ADS  MATH  Google Scholar 

  23. Kourta, A. (1984): Analyse Physique et simulation numérique des structures tourbillonaires du sillage proche d’un cylindre circulaire. Thèse I.N.P. Toulouse, No. 346

    Google Scholar 

  24. Liepman, H. W., Laufer, J. (1947): Investigation of free turbulent mixing. N.A.C.A. Tech. Note, No 1257

    Google Scholar 

  25. Brown, G. L., Roshko, A. (1971): “The Effects of Density Difference on the Turbulent Mixing Layer,” AGARD Meeting on Turbulent Shear Flow, London

    Google Scholar 

  26. Freymuth, P. (1966): On transition in a separated boundary layer. J. Fluid Mech. 25, 983–704

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kourta, A., Boisson, H.C., Braza, M., Chassaing, P., Minh, H.H. (1987). Wake-Shear Layer Interaction and the Onset of Turbulence Behind a Circular Cylinder. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics