Skip to main content

A Simplified Spectral Closure for Inhomogeneous Turbulence: Application to the Boundary Layer

  • Conference paper
Turbulent Shear Flows 5

Abstract

A turbulence model is proposed for the prediction of inhomogeneous flows. A spectral closure is used to predict the energy transfer to the dissipative scales. The inhomogeneous transport terms are evaluated within the framework of one-point closures. Rough approximations are made concerning the anisotropy of turbulence. In the case of a flat plate boundary layer, the model is found to compare favorably with the experimental data. Possible improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

< >):

Statistical average

aKPQ):

\( = \frac{1}{2}({b_{KPQ}} + {b_{KQP}}) \)

b):

Constant

bKPQ):

Coefficient depending on the geometry of a triad in wave space

D(K, X, t)):

Transport term in the energy spectrum equation

E(K, X, t)):

Energy spectrum

g(K, Kmax)):

Modeled spectral shape for the transport term D

K):

Wave-vector

K):

Wave-number, = |K|

Kmin):

Infrared cutoff for the spectral computation

Kmax):

Wave-number corresponding to the maximum of the energy spectrum

k):

Turbulent kinetic energy

K):

Constant

L):

Integral length scale

<q2>):

Twice the turbulent kinetic energy

r):

Constant

T(K, X, t)):

Energy transfer

Ui(X, t)):

Velocity field

u*):

Shear stress velocity

δ):

Boundary layer thickness

σ1, σ2):

Constants

Фij(K, X , t)):

Spectral tensor, Fourier transform of the double velocity correlation at x and x′ with \(X = \frac{{x + x\prime }}{2}\)

φij(k, X, t)):

Integral of Ф ij over a spherical shell of radius K

φij,l):

Fourier transform of the triple correlation

λ):

Constant

ω):

Dimensionless stream function, \( = \frac{{\psi - {\psi _1}}}{{{\psi _E} - {\psi _1}}} \)

πi):

Fourier transform of the pressure velocity correlation

ψ):

Stream function

µ):

Damping factor

v):

Kinematic viscosity

θKPQ):

E.D.Q.N.M. characteristic time

References

  • Bertoglio, J.-P. (1982): A model of three-dimensional transfer in non-isotropic homogeneous turbulence, in Turbulent Shear Flows 3, ed. by L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt, J. H. Whitelaw (Springer, Berlin, Heidelberg) p. 253

    Google Scholar 

  • Cambon, C., Jeandel, D., Mathieu, J. (1981 a): Spectral modeling of homogeneous non-isotropic Turbulence. J. Fluid Mech. 104, pp. 247–262

    Article  ADS  MATH  Google Scholar 

  • Cambon, C., Bertoglio, J.-P., Jeandel, D., (1981b); Spectral closure of homogeneous turbulence, AFOSR-HTTM-Stanford Conf. on Complex Turb. Flows, Sept. 1981

    Google Scholar 

  • Dannevik, W., (1984): Two-point closure study of covariance budgets for turbulent Rayleigh-Benard convection, Ph. D. Thesis, St. Louis Univ., MO

    Google Scholar 

  • Goldstein, M. E., Durbin, P. A. (1980): The effect of finite turbulence spatial scale on the amplification of turbulence by contracting stream. J. Fluid Mech. 98, (3), 473–508

    Article  ADS  MATH  Google Scholar 

  • Hamadiche, M. (1981): Modélisation spectrale des mécanismes linéaires dans les écoulements turbulents non homogènes. Thèse Univ. Cl. Bernard, Lyon I, Déc. 1981

    Google Scholar 

  • Herring, J. R. (1985): Some contributions of two-point closure to turbulence, in Frontiers in Fluid Mechanics (Springer, Berlin, Heidelberg) p. 68

    Google Scholar 

  • Hunt, J. C. R. (1978): A review of the theory of rapidly distorded turbulent flows and its applications. Fluid Dyn. Trans. 9, 121–152

    Google Scholar 

  • Jeandel, D. (1976): Une approche phénoménologique des écoulements turbulents inhomogènes. Thèse Univ. Cl. Bernard, Lyon I, Juillet 1976

    Google Scholar 

  • Jeandel, D., Brison, J. F., Mathieu, J. (1978): Modeling methods in physical and spectral space. Phys. Fluids 21, 169

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Klebanoff, P. S. (1955): Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Report 1247

    Google Scholar 

  • Kraichnan, R. H. (1972): Test-field model for inhomogeneous turbulence. J. Fluid Mech. 56, 287–304

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lumley, J. L. (1983): Turbulence modeling, J. Appl. Mech. 50, 1097

    Article  ADS  Google Scholar 

  • Maxey, M. R. (1982): Distortion of turbulence in flows with parallel streamlines. J. Fluid Mech. 124, 261–282

    Article  ADS  MATH  Google Scholar 

  • Ménoret, L. (1982): Contribution à l’étude spectrale des écoulements turbulents faiblement inhomogènes et anisotropes. Thèse Univ. Cl. Bernard, Lyon I, Juin 1982

    Google Scholar 

  • Ng, K. H., Spalding, D. B. (1972): Turbulence model for boundary layers near walls. Phys Fluids 15, 20

    Article  ADS  MATH  Google Scholar 

  • Ng, K. H., Spalding, D. B. (1976): Predictions of two-dimensional boundary layers on smooth walls with a two-equation model of turbulence. Int. J. Heat Mass Transf. 19, 1161–1172

    Article  ADS  Google Scholar 

  • Orszag, S. A. (1970): Analytical theories of turbulence. J. Fluid Mech. 41, 363–386

    Article  ADS  MATH  Google Scholar 

  • Patankar, S.V., Spalding, D. B. (1967): Heat and Mass Transfer in Boundary Layers (Morgan-Grampian, London)

    Google Scholar 

  • Rodi, W., Spalding, D. B. (1970): Wärme Stoffübertrag. 3, 85

    Article  ADS  Google Scholar 

  • Weinstock, J. (1981): Theory of pressure-strain-rate correlation for Reynolds-stress turbulence closures, Part 1. Off-diagonal element. J. Fluid. Mech. 105, 369–396

    Article  ADS  MATH  Google Scholar 

  • Weinstock, J. (1982): Theory of the pressure-strain-rate. Part 2. Diagonal elements. J. Fluid. Mech. 116, 1–29

    Article  ADS  MATH  Google Scholar 

  • Wu, C. T., Ferziger, J. H., Chapman, D. R. (1985): Simulations and modeling of homogeneous, compressed turbulence, Fifth Symposium on Turbulent Shear Flows

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertoglio, JP., Jeandel, D. (1987). A Simplified Spectral Closure for Inhomogeneous Turbulence: Application to the Boundary Layer. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics