Skip to main content

Experimental and Numerical Study of a Turbulent Recirculation Zone with Combustion

  • Conference paper
Turbulent Shear Flows 5

Abstract

Recirculation zones are widely used for the stabilization of combustion in flows with a large velocity. The main example of this is the case of afterburner devices for turbojet engines, where the turbulent flame is stabilized by bluff bodies behind which recirculation zones occur. The prediction of the general shape of the flow field and of the temperatue field of these recirculating flows is of primary importance for the prediction of the “stability domain” of the burners. Two properties of the recirculation zone are of particular interest for combustion stabilization: its volume and the mass flow rate exchanged with the external flow. These two characteristics control the residence times of the fluid particles within the recirculation zone, which has to be large enough to ensure a good stabilization of the combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pope, S. B., Whitelaw, J. H. (1976): The calculation of near-wake flows. J. Fluid Mech. 73, 9–32

    Article  ADS  Google Scholar 

  2. Durst, F., Rastogi, A. K. (1979): “Turbulent Flow over Two-Dimensional Fences”, in Turbulent Shear Flows 2, ed. by L. J. S. Bradbury et al. (Springer, Berlin, Heidelberg) 218

    Google Scholar 

  3. Mobsby, J. A., Fussey, D. E. (1979): “A Three-Environment Mixing Model for Turbulent Flame Studies”, 17th Int. Symp. on Combustion, 411

    Google Scholar 

  4. Jones, W. P., Mac Guirk, J. J. (1980): Mathematical modelling of gas turbine combustion chambers. AGARD Conf. Proc. 275

    Google Scholar 

  5. Winterfeld, G. (1965): “On Process of Turbulent Exchange Behind Flame Holders”, 10th Int. Symp. on Combustion, The Combustion Institute

    Google Scholar 

  6. Clare, H., Durao, D. F. G., Melling, A., Whitelaw, J. H. (1976): Investigation of a V-gutter stabilized flame by laser anemometry and Schlieren photography. AGARD Conf. Proc. 193

    Google Scholar 

  7. Pitz, R. W, Daily, J. W. (1981): Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step. AIAA 19th Aerospace Sciences Meeting (St. Louis)

    Google Scholar 

  8. Taylor, A. M. K. P., Whitelaw, J. H. (1980): Velocity and temperature measurements in a premixed flame within an axisymmetric combustor, AGARD Conf. Proc. 281

    Google Scholar 

  9. Fuji, S., Egushi, K. (1981): A comparison of cold and reacting flows around a bluff body flame stabilizer. ASME J. 103, 328–334

    Article  Google Scholar 

  10. Borghi, R., Escudié, D. (1984): Assessment of a theoretical model of turbulent combustion by comparison with a simple experiment. Combust. Flame 56, 149–164

    Article  Google Scholar 

  11. Vandromme, D., Ha Minh, H., Viegas, J. R., Rubesin, M. W, Kollmann, W (1983): Second-order closure for the calculation of compressible wall bounded flows with an implicit Navier-Stokes solver, 4th turbulent shear flow (Karlsruhe)

    Google Scholar 

  12. Garyi, A. R., Sawyer, R. F. (1979): An experimental study of the flow field and pollutant formation in a two dimensional, premixed, turbulent flame. AIAA 17th Aerospace Sciences Meeting (New Orleans).

    Google Scholar 

  13. Labbe, J., Magre, P., Collin, G. (1983): Flow measurements in an experimental combustion chamber. AIAA 18th Thermophysics Conference (Montreal)

    Google Scholar 

  14. Davies, T. W., Beer, J. M. (1969): The turbulence characteristics of annular wake flow. International Seminar on Heat and Mass Transfer, Herceg-Noir

    Google Scholar 

  15. Dutoya, D., Michard, P. (1980): An implicit finite volume method for the calculation of elliptic flows. La Recherche Aérospatiale, 1980–2

    Google Scholar 

  16. Dupoirieux, F. (1983): “Prédiction d’écoulements turbulents réactifs”, AGARD Conf. Proc. 353

    Google Scholar 

  17. Dupoirieux, F. (1985): “A new model of combustion for the numerical computation of turbulent reactive flows”, to be presented at the 10th International Colloquium on Dynamics of Explosions and Reactive Systems (Berkeley)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moreau, P., Labbé, J., Dupoirieux, F., Borghi, R. (1987). Experimental and Numerical Study of a Turbulent Recirculation Zone with Combustion. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics