Skip to main content

Modelling the Flow and Combustion in a Production Gas Turbine Combustor

  • Conference paper
Turbulent Shear Flows 5

Abstract

Most papers on flow modelling are concerned with simple laboratory flows. This paper demonstrates the application of current modelling methods to a production gas turbine combustor and demonstrates that the flow field, exit temperature and NOx emissions can be predicted to an acceptable accuracy even in such a complex flow. It is shown how the shape of the exit temperature pattern develops: any proposed modification to improve it can therefore be assessed prior to manufacture and test. Combustion chemistry is represented by a fluctuating equilibrium scheme, and the NOx formation rate is integrated over the fluctuations. The method uses a body-fitted orthogonal coordinate system which can be mapped into any axisymmetric internal flow region. The standard k — ε model used in the calculations is adequate for the flow field, the only alteration necessary being that the value of the effective Prandtl number for fuel be reduced from the value used in boundary layer flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A):

Constant used in mesh generation method

a, b):

Exponents in Beta function

Cμ, Cε1, Cε2):

Turbulence model constants

f):

Fuel fraction

G):

Generation rate of turbulence energy

gij):

Metric tensor

k):

Turbulence kinetic energy

[N2]):

Nitrogen molecule concentration

n):

Number of nodes on combustor outline

[O]):

Oxygen atom concentration

P(f)):

Probability density function

p):

Static pressure

R(f)):

Nitric oxide production rate

S):

Source term

T):

Gas Temperature

Ui):

Velocity vector

W):

Complex coordinate in combustor plane

z):

Complex coordinate in transformed plane

αi):

Interior angle of combustor outline at node i

Γ):

Diffusion coefficient

μ):

Turbulence energy dissipation rate

ε):

Turbulence energy dissipation rate

μ):

Laminar viscosity

μT):

Turbulent viscosity

ϱ):

Density

σT):

Turbulent Prandtl number

τij):

Stress tensor

φ):

Scalar

References

  1. Jones, W. P., Clifford, W. C., Priddin, C. H., Chair, R. de (1978): A comparison between predicted and measured species concentrations and velocities in a research combustor. High Temperature Problems in Gas Turbine Engines. AGARD Conf. Proc. 229

    Google Scholar 

  2. Jones, W. P., Priddin, C. H. (1978): Predictions of the Flow Field and Local Gas Composition in Gas Turbine Combustors, Proceedings of the 17th Symposium on Combustion, Combustion Institute, 399–409

    Google Scholar 

  3. Sturgess, G. J., Syed, S. A.: (1985): Calculation of Confined Swirling Flows, AIAA 23rd Aerospace Sciences Meeting, AIAA-85–0060

    Google Scholar 

  4. Rodi, W. (1972): The Prediction of Free Turbulent Boundary Layers by Use of a Two-Equation Model of Turbulence; Ph.D. Thesis, University of London

    Google Scholar 

  5. Boysan, F., Swithenbank, J. (1982): Fundamental mathematical modelling approach to cyclone design. Trans. Inst. Chem. Eng. 60, 222–230

    Google Scholar 

  6. Shyy, W., Correa, M., Tong, S. S. (1984): Demonstration of a New Body-Fitted Coordinate Code for Modelling Gas Turbine Combustor Flows, AIAA/SAE/ASME 20th Joint Propulsion Conference, Cincinnati, Ohio

    Google Scholar 

  7. Moore, J., Moore, J. B. (1984): Calculation of a horseshoe vortex flow without numerical mixing. ASME 84-GT-241

    Google Scholar 

  8. Launder, B. E., Spalding, D. B. (1974): The numerical computation of turbulent flows. Comp. Meth. Appl. Mech. Eng. 3, 269–289

    Article  MATH  Google Scholar 

  9. Patankar, S. V. (1979): Numerical Heat Transfer and Fluid Flow, (Hemisphere, London)

    Google Scholar 

  10. Anderson, O. L., Davis, R. T., Edwards, D. E., Hawkins, G. B. (1982): Solution of Viscous Internal Flows on Curvilinear Grids Generated by the Schwarz-Cristoffel Transformation, Symposium on the Numerical Generation of Curvilinear Coordinate Systems, Mississippi State University

    Google Scholar 

  11. Gordon, S., McBride, B. J. (1971): Computer program for calculation of complex chemical equilibrium compositions. NASA SP273

    Google Scholar 

  12. Baulch, D. L., Drysdale, D. D., Home, D. G., Lloyd, A. C. (1973): Homogenous Gas Phase Reactions of the H2-N2–02 System, Evaluated Kinetic Data for High Temperature Reactions, Vol. 2, (Butter-worths, London)

    Google Scholar 

  13. Sturgess, G. J., McManus, K. R. (1984): Calculations of Turbulent Mass Transport in a Bluff-Body Diffusion-Flame Combustor, AIAA 22nd Aerospace Sciences Meeting, AIAA-84–0372

    Google Scholar 

  14. Chambers, A. J., Antonia, R. A., Fulachier, L. (1985): Turbulent Prandtl number and spectral characteristics of a turbulent mixing layer. Int. J. Heat Mass Trans. 28, 1461–1468

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coupland, J., Priddin, C.H. (1987). Modelling the Flow and Combustion in a Production Gas Turbine Combustor. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics