Skip to main content

On Modelling the Pressure Terms of the Scalar Flux Equations

  • Conference paper
Turbulent Shear Flows 5

Abstract

The paper is concerned with the problem of modelling the ensemble averaged product of the pressure and scalar gradient that appears in the equations for the scalar flux <u i θ>. The method (for nearly homogeneous unidirectional flow with weak gradients) is to derive nonlinear expressions for the fluctuating parts of the pressure and the scalar by formal solution (in wave vector space) of the Navier-Stokes and the scalar equations. Substitution in the Fourier transform of the pressure correlation shows that this quantity is the sum of four terms, one of which contains the mean scalar gradient. A fourth-order cumulant discard approximation allows this term to be expressed in terms of the single point double products and the turbulent energy and stress spectra. A numerical calculation is made when the spectra are represented by simple functions. Finally, a tentative model is proposed in which the remaining terms of the pressure correlation are evaluated by reference to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

bij):

Anisotropy tensor 2<u i u j > /q 2 — 2δ ij /3

Cθ 1 — Cθ 5):

Turbulence model constants

I(r, t)):

Quantity defined by Eq. (7)

G0(r,t;r1,t1)):

Green’s function, Eq. (10)

k):

Wave vector

kij):

j component of k i vector

N(k,t)):

Fourier transform defined by Eq.(5)

P):

Turbulent energy production rate

p):

Fluctuating part of the pressure

Pr t ):

Turbulent Prandtl number

r):

Position vector

Sij (k, t, t1)):

Two-time energy spectrum tensor

Sij (k, t)):

One-time energy spectrum tensor

T):

Mean value of scalar quantity

t):

Time

U):

Mean velocity

u):

Velocity vector

<uiuj>):

Reynolds stress

<uiθ>):

Scalar flux

V):

Volume

v2 0):

\( \frac{1}{3}{q^{2}} \)

q2 = <uiui>):

2 × turbulent kinetic energy

xi (i = 1, 3)):

Cartesian coordinates

α, β, γ):

Constants in spectrum models

δ):

Dirac delta function

δij):

Kronecker delta

ε):

Turbulent energy dissipation rate

θ):

Fluctuating part of scalar quantity

λ):

Diffusivity

ϱ):

Fluid density

Ф):

Pressure-scalar-gradient correlation

i, j, k):

Tensor indices

*):

Complex conjugate

References

  1. Rotta, J. C.: Statistische Theorie nichthomogener Turbulenz. Z. Phys. 129, 547 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Lumley, J. L.: Computational modelling of turbulent flows. Adv. Appl. Mech. 18, 123 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Jones, W. P., Musonge, P.: Modelling of scalar transport in homogeneous turbulent flows, Proceedings of the 4th Turbulent Shear Flows Symposium, Karlsruhe (1983)

    Google Scholar 

  4. Tavoularis, S., Corrsin, S.: Experiments in nearly homogeneous turbulence with a unitform mean temperature gradient. J. Fluid Mech. 104, 311 (1981)

    Article  ADS  Google Scholar 

  5. Weinstock, J.: Theory of the pressure strain rate correlation for Reynolds-stress turbulence closures. Part 1. Off-diagonal element. J. Fluid Mech. 105, 369 (1981)

    Article  ADS  MATH  Google Scholar 

  6. Weinstock, J.: Theory of the pressure-strain rate. Part 2. Diagonal elements. J. Fluid Mech. 116, 1 (1982)

    Article  ADS  MATH  Google Scholar 

  7. Dakos, T.: Fundamental heat-transfer studies in grid-generated homogeneous turbulence. Ph.D. Thesis, Imperial College, London (in preparation)

    Google Scholar 

  8. Kraichnan, R.: The structure of isotropic turbulence at high Reynolds numbers. J. Fluid Mech. 5, 497 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Meecham, W. C.: Turbulence-energy principles for quasi-normal and Weiner-Hermite expansions. Phys. Fluids 8, 1738 (1965)

    Article  ADS  Google Scholar 

  10. Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657 (1966)

    Article  ADS  Google Scholar 

  11. Hinze, J. O.: Turbulence, 2nd ed. (McGraw-Hill, New York 1975)

    Google Scholar 

  12. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., Cote, O. R.: Spectral characteristics of surface-layer turbulence. Q. J. Roy. Met. Soc. 98, 563 (1972)

    Article  ADS  Google Scholar 

  13. Sirivat, A., Warhaft, Z.: The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence. J. Fluid Mech. 120, 475 (1982)

    Article  ADS  Google Scholar 

  14. Launder, B. E.: Heat and Mass Transport in Turbulence, in Turbulence, ed. by P. Bradshaw, Topics in Appl. Phys., Vol. 12, 2nd ed. (Springer, Berlin, Heidelberg 1978) Chap. 6

    Google Scholar 

  15. Champagne, F. H., Harris, V. B., Corrsin, S.: “Experiments on nearly homogeneous turbulent shear flow”. J. Fluid Mech. 41, 81 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dakos, T., Gibson, M.M. (1987). On Modelling the Pressure Terms of the Scalar Flux Equations. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics