Advertisement

Low Reynolds Number Turbulent Boundary Layers on a Smooth Flat Surface in a Zero Pressure Gradient

  • L. P. Erm
  • A. J. Smits
  • P. N. Joubert

Abstract

An experimental investigation of low Reynolds number turbulent boundary layers (R θ < 5000) on a smooth flat surface in a nominally zero pressure gradient is described. Stimulator pins of three different heights were used to trip the boundary layer. Mean flow velocity profile measurements were analysed using the method of Coles [2]. This method involved fitting the data to a log-law Une having constants K = 0.41 and C = 5.0 and inferring values of II and u τ . Acceptable low Reynolds number turbulent boundary layers were shown to exist. Broadband turbulence and spectral measurements for R θ = 5010, the highest Reynolds number obtainable in these experiments, were compared, where possible, with other data and the agreement was good. Both mean flow and turbulence results were shown to be dependent on Reynolds number and apparently dependent on the size of the tripping device.

Keywords

Reynolds Number Turbulence Intensity Turbulent Boundary Layer Reynolds Shear Stress Outer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

C)

Log-law constant

C’f)

Local skin friction coefficient

k1)

Stream wise wave number, 1/m

Rθ)

Reynolds number based on momentum thickness

u)

Longitudinal component of velocity, m/s

u’)

Longitudinal fluctuating component of velocity, m/s

uτ)

Friction velocity, m/s

v’)

Normal fluctuating component of velocity, m/s

W)

Coles “Law of the wake”

x)

Distance from tripping device in longitudinal direction, m

y)

Distance from wall, m

δ)

Boundary layer thickness where velocity has 99.5% of its freestream value,m

δH)

Hama boundary layer thickness, m

δHuτ/v)

Karman number

ε)

Turbulent energy dissipation, m2/s3

η = (v3/ε)1/4)

Kolmogoroff length scale, m

θ)

Boundary layer momentum thickness, m

θ0)

Momentum thickness for the most upstream profile, m

K)

Log, law constant

v)

Kinematic viscosity, m2/s

II)

Profile parameter

y = (vε)1/4)

Kolmogoroff velocity scale, m/s

Φ11 (k1 y))

Energy density per unit k1 y

Φ11 (k1 δ))

Energy density per unit k1 δ

Φ11 (k1 η))

Energy density per unit k1 η

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coles, D. E. (1956): The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191–226MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Coles, D. E. (1962): The turbulent boundary layer in a compressible fluid. Rand Report R-403-PRGoogle Scholar
  3. 3.
    Coles, D. E. (1968): “The Young Person’s Guide to the Data”, in Proceedings Computation of Turbulent Boundary Layers, AFOSR-IFF’-Stanford Conference, Vol. 2, ed. by Coles, HirstGoogle Scholar
  4. 4.
    Simpson, R. L. (1970): Characteristics of turbulent boundary layers at low Reynolds numbers with and without transpiration. J. Fluid Mech. 42, 769–802ADSCrossRefGoogle Scholar
  5. 5.
    Huffman, G. D., Bradshaw, P. (1972): A note on von Karman’s constant in low Reynolds number turbulent flows. J. Fluid Mech. 53, 45–60ADSCrossRefGoogle Scholar
  6. 6.
    Granville, P. S. (1977): Drag and turbulent boundary layer of flat plates at low Reynolds numbers. J. Ship Res. 21, 30–39ADSGoogle Scholar
  7. 7.
    Purtell, L. P., Klebanoff, P. S., Buckley, F. T. (1981): Turbulent boundary layer at low Reynolds number. Phys. Fluids 24, 802–811ADSCrossRefGoogle Scholar
  8. 8.
    Murlis, J., Tsai, H. M., Bradshaw, P. (1982): The structure of turbulent boundary layers at low Reynolds numbers. J. Fluid Mech. 122, 13–56ADSCrossRefGoogle Scholar
  9. 9.
    Smits, A. J., Matheson, N., Joubert, P.N. (1983): Low Reynolds number turbulent boundary layers in zero and favourable pressure gradients. J. Ship Res. 127, 147–157Google Scholar
  10. 10.
    Joubert, P. N., Sinclair, T. J., Hoffman, P. H. (1978): A further study of bodies of revolution. J. Ship Res. 22, 54–63Google Scholar
  11. 11.
    Perry, A. E., Morrison, G. L. (1971): Static and dynamic calibrations of constant-temperature hot-wire systems. J. Fluid Mech. 47, 765–777ADSCrossRefGoogle Scholar
  12. 12.
    Perry, A. E. (1982): Hot-Wire Anemometry (Oxford University Press, New York)Google Scholar
  13. 13.
    Klebanoff, P. S. (1955): Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Report 1247Google Scholar
  14. 14.
    Murlis, J. (1975): “The Structure of a Turbulent Boundary Layer at Low Reynolds Number”, Ph.D Thesis, Imperial College, LondonGoogle Scholar
  15. 15.
    Watmuff, J. H., Witt, H., Joubert, P. N. (1985): Developing turbulent boundary layers with system rotation. J. Fluid Mech. 157, 405–448ADSCrossRefGoogle Scholar
  16. 16.
    Perry, A. E., Lim, K. L., Henbest, S. M. (1985): “A Spectral Analysis of Smooth Flat-Plate Boundary Layers”, Fifth Symposium on Turbulent Shear Flows, Cornell University, Ithaca, New York, USAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • L. P. Erm
    • 1
  • A. J. Smits
    • 2
  • P. N. Joubert
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MelbourneParkvilleAustralia
  2. 2.Mechanical and Aerospace Engineering DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations