Effect of Fludrocortisone on Adrenoceptors and Free Intracellular Calcium in Man

  • E. Fritschka
  • A. Kribben
  • S. Harwig
  • H. Haller
  • T. Lenz
  • H. M. Thiede
  • M. Luedersdorf
  • Th. Philipp
  • A. Distler

Abstract

The mineralocorticoid - induced blood pressure increase in normotensive man is characterized by an early rise in cardiac output during the 1st week of steroid administration and a persistent increase in total peripheral resistance (TPR), which is observed later on, when cardiac output returns to pretreatment values [1,2]. The initial rise in cardiac output has been linked to sodium and volume retention [3,4]. The mechanism of the persistent increase in TPR in the presence of a normal or subnormal cardiac output remains elusive. Alterations of sympathetic nervous system activity and increased passive membrane permeability for sodium have been observed in animal models of mineralocorticoid hypertension [5, 6]. The present study examined parameters of sympathetic activity and intracellular calcium concentration, which ultimately should be linked to altered cellular sodium transport [7] in normotensive volunteers, in whom a mineralocorticoid-induced blood pressure increase was evoked by oral administration of fludrocortisone.

Keywords

Cortisol Angiotensin Noradrenaline Fluores Propranolol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Distler A, Philipp TH, Lueth B, Wucherer G (1979) Studies on the mechanism of mineralocorti-coid-induced blood pressure increase in man. Clin Sci 57: 303s–305sPubMedGoogle Scholar
  2. 2.
    Wenting GJ, Man in T Veld AJ, Schalekamp MADH (1981) Time-course of vascular resistance changes in mineralocorticoid hypertension of man. Clin Sci 61: 97s–100sGoogle Scholar
  3. 3.
    Chobanian AV, Burrows BA, Hollander W (1961) Body fluid and electrolyte composition in ar-terial hypertension. II. Studies in mineralocorticoid hypertension. J Clin Invest 40: 416–422Google Scholar
  4. 4.
    Wenting GJ, Man in T Veld AJ, Derkx FHM (1982) Recurrence of hypertension in primary aldosteronism after discontinuation of spironolactone. Time course of changes in cardiac output and body fluid volumes. Clin Exp Hypertension A4 (9,10): 1727–1748Google Scholar
  5. 5.
    Mecca TE, Lamb FS, Hall JL, Webb RC (1985) Cerebral intraventricular 6-hydroxydopamine prevents vascular changes in the mineralocorticoid hypertensive rat. (42094). Proc Soc Exp Biol Med 179: 248–253PubMedGoogle Scholar
  6. 6.
    Garwitz ET, Jones AW (1982) Aldosterone infusion into the rat and dose dependent changes in blood pressure and arterial ionic transport. Hypertension 4: 374–381PubMedGoogle Scholar
  7. 7.
    Friedman SM, Nakashima M (1978) Evidence for exchanged Na transport in hypertension induced by DOCA in the rat. Can J Physiol Pharmacol 56: 1029–1035PubMedCrossRefGoogle Scholar
  8. 8.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  9. 9.
    Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellular trapped fluorescent indicator. J Cell Biol 94: 325–334PubMedCrossRefGoogle Scholar
  10. 10.
    Rink TJ, Smoth SW, Tsien RY (1982) Cytoplasmic free Ca+ + in human platelets. Ca+ + thresholds and Ca++-independent activation for shape change and aggregation. FEBS Lett 148: 21–26PubMedCrossRefGoogle Scholar
  11. 11.
    Haber E, Koerner T, Page LB, Kliman B, Purnode A (1969) Application of a radioimmunoassay for angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects. J Clin Endocrinol Metab 29: 1349–1355PubMedCrossRefGoogle Scholar
  12. 12.
    Oelkers W, Belkien L, Baumann J, Meyland M (1982) The effect of Captopril on renin, angiotensin II, Cortisol, and aldosterone during ACTH-infusion in man. Clin Exp Hypertension A4 (9, 10): 1505–1517CrossRefGoogle Scholar
  13. 13.
    Woodcock EA, Funder JW, Johnston CI (1979) Decreased cardiac beta-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res 45: 560–565PubMedGoogle Scholar
  14. 14.
    Woodcock EA, Olsson CA, Johnston CI (1980) Reduced vascular beta-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Biochem Pharmacol 29: 1465–1468PubMedCrossRefGoogle Scholar
  15. 15.
    Yamada S, Yamamura HI, Roeske WR (1980) Alterations in central and peripheral adrenergic receptors in deoxycorticosterone/salt hypertensive rats. Life Sci 27: 2405–2416PubMedCrossRefGoogle Scholar
  16. 16.
    De Champlain J, Mueller RA, Axelrod J (1969) Turnover and synthesis of norepinephrine in experimental hypertension in rats. Circ Res 25: 285–291PubMedGoogle Scholar
  17. 17.
    Krakoff LR, Ben-Ishay D, Mekler J (1985) Reduced sympathetic neuronal uptake (uptakel) in a genetic model of deoxycorticosterone-NaCl hypertension. Proc. Soc Exp Biol Med 178: 240–245Google Scholar
  18. 18.
    Reid JL, Zivin JA, Kopin IJ (1975) Central and peripheral adrenergic mechanisms in the development of deoxycorticosteronesaline hypertension in rats. Circ Res 37: 569–579PubMedGoogle Scholar
  19. 19.
    Insel PA, Motulsky HJ (1984) A hypothesis linking intracellular sodium, membrane receptors, and hypertension. Life Sci 34: 1009–1013PubMedCrossRefGoogle Scholar
  20. 20.
    Mooney JJ, Hörne WC, Handin RI, Schildkraut JJ, Alexander RW (1982) Sodium inhibits both adenylate cyclase and high-affinity 3H-labeled p-aminoclonidine binding to alpha2-adrenergic receptors in purified platelet membranes. Mol Pharmacol 21: 600–608PubMedGoogle Scholar
  21. 21.
    Di Bona GR (1978) Neural control of renal tubular sodium reabsorbtion in the dog. Fed Proc 37: 1214–1217Google Scholar
  22. 22.
    Katholi RE, Naftilan AJ, Oparil S (1980) Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat. Hypertension 2: 266–273PubMedGoogle Scholar
  23. 23.
    Fritschka E, Kribben A, Hoyer J, Schudrowitsch L, Thiede HM, Distler A, Philipp T (1985) Adrenerge Rezeptoren bei Patienten mit essentieller Hypertonie. Einfluß von Alter und familiärer Belastung. Hochdruck 6: 43–44Google Scholar
  24. 24.
    Hamed AT, Lokwandala MF (1982) Impairment of neurally-mediated vasoconstriction in DO¬CA-salt hypertensive dogs. Clin Exp Hypertension A4 (6): 867–881CrossRefGoogle Scholar
  25. 25.
    Pamnani MB, Overbeck HW (1976) Abnormal ion and water composition of veins and normotensive arteries in coarctation hypertension in rats. Circ Res 38: 375–380PubMedGoogle Scholar
  26. 26.
    Brock TA, Fleming BP, Diana JN (1981) Pre- and postcapillary vascular responses to sympathetic nerve stimulation in DOCA-hypertensive dogs. Hypertension 3: 471–478PubMedGoogle Scholar
  27. 27.
    Resnick LM, Laragh JL (1985) Calcium metabolism and parathyroid function in primary aldosteronism. Am J Med 78: 385–390PubMedCrossRefGoogle Scholar
  28. 28.
    Wright GL, Rankin GD (1982) Concentrations of ionic and total calcium in plasma of four models of hypertension. Am J Physiol 243: H365–H370PubMedGoogle Scholar
  29. 29.
    Hall CE, Hungerford S (1983) Prevention of DOCA-salt hypertension with the calcium blocker nitrendipine. Clin Exp Hypertension A5 (5): 721–728CrossRefGoogle Scholar
  30. 30.
    Ashida T, Tanaka T, Yokouchi M, Kuramochi M, Deguchi F, Kimura G, Kojima S, Ito K, Ikeda M (1985) Effect of dietary sodium on platelet α2-adrenergic receptors in essential hypertension. Hypertension 7: 972–978PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • E. Fritschka
    • 1
  • A. Kribben
    • 1
  • S. Harwig
    • 1
  • H. Haller
    • 1
  • T. Lenz
    • 1
  • H. M. Thiede
    • 1
  • M. Luedersdorf
    • 1
  • Th. Philipp
  • A. Distler
    • 1
  1. 1.Medizinische Klinik und Poliklinik, Klinikum SteglitzFreie Universität BerlinBerlin 45Federal Republic of Germany

Personalised recommendations