Quantum Noise in Homodyne Detection

  • R. Loudon
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 12)


Optical homodyne detection theory is of considerable current interest in connection with the interpretation of experiments [1–3] on squeezed light. The theory has been developed in great detail and generality [4–6]. The aim of the present work is a clarification of the noise properties of the detection process. Pictorial representations are used to show the sources of noise and their contributions to the output noise in ordinary and balanced four-port homodyne detection, where only one signal quadrature is measured. A more general scheme is described for eight-port homodyne detection in which both quadratures are measured with arbitrary relative weights. The noise properties of this more complicated detector are also interpreted pictorially.


Beam Splitter Photon Number Local Oscillator Output Mode Noise Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.D. Levenson, R.M. Shelby, A. Aspect, M.D. Reid and D.F. Walls: Phys. Rev. A 32, 1550 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    KM. Maeda, P. Kumar and J.H. Shapiro: Phys. Rev. A 32, 3803 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz and J.F. Valley: Phys. Rev. Lett. 55, 2409 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    H.P. Yuen and J.H. Shapiro: IEEE Trans. Inf. Theory 24, 657 (1978)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    J.H. Shapiro, H.P. Yuen and J.A. Machado Mata: IEEE Trans. Inf. Theory 25 179 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    H.P. Yuen and J.H. Shapiro: IEEE Trans. Inf. Theory 26, 78 (1980)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    H.P. Yuen: Phys. Rev. A 13, 2226 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    C.M. Caves: Phvs. Rev. D 23, 1693 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    D.F. Walls: Nature 306, 141 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    C.M. Caves: in Coherence, Cooperation and Fluctuations (eds. F. Haake, L.M. Narducci and D.F. Walls) (Cambridge University Press 1986) to be publishedGoogle Scholar
  11. 11.
    B.M. Oliver: Proc. IRE 49, 1960 (1961)Google Scholar
  12. 12.
    H.R. Carleton and W.T. Maloney: Appl. Optics 7, 1241 (1968)ADSCrossRefGoogle Scholar
  13. 13.
    H.P. Yuen and V.W.S. Chan: Optics Lett. 8, 177 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    G.L. Abbas, V.W.S. Chan and T.K. Yee: Optics Lett. 8, 419 (1983)ADSCrossRefGoogle Scholar
  15. 15.
    B.L. Schumaker: Optics Lett. 9, 189 (1984)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    B.M. Oliver: Proc. IRE 50, 1545 (1962)Google Scholar
  17. 17.
    N.G. Walker and J.E. Carroll: AGARD Conf. Proc. 362, Digital Optical Circuit Technology 12. 1 (1984)Google Scholar
  18. 18.
    N.G. Walker: to be publishedGoogle Scholar
  19. 19.
    N.G. Walker and J.L. Carroll: Electron. Lett. 20, 981 (1984)CrossRefGoogle Scholar
  20. 20.
    E. Arthurs and J.L. Kelly: Bell Syst. Tech. J. 44, 725 (1965)Google Scholar
  21. 21.
    J.H. Shapiro and S.S. Wagner: IEEE J. Quantum Electron. 20, 803 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. Loudon
    • 1
  1. 1.Physics DepartmentEssex UniversityColchesterEngland

Personalised recommendations