Single- and Multimode Instabilities in Lasers

  • H. Risken
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 12)


Instabilities play an important role in a large number of fields for example in hydrodynamics, plasma physics, semiconductor physics, ecology and economy. Also in lasers can a great variety of instabilities be found. Compared to hydrodynamics and plasma physics the nonlinear laser equations are, at least for simple ring-laser models, rather simple. Therefore the investigation of the instabilities in lasers is easier to carry out than in most other fields. The main simplification seems to be that for our ring-laser model only one space coordinate needs to be taken into account, whereas for the instabilities in hydrodynamics at least two space coordinates are usually to be considered.


Electric Field Pulse Resonant Mode Instable Region Optic Comm Lorenz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Haken, Laser Theory, in Encyclopedia of Physics, Vol. XXV/2c, Springer, Berlin (1970)Google Scholar
  2. 2.
    M. Sargent, M.O. Scully, W.E. Lamb, Laser Physics, Addison-Wesley, Reading, MA (1974)Google Scholar
  3. 3.
    H. Haken, Light, Vol. 2, Laser Light Dynamics, North Holland, Amsterdam (1985)Google Scholar
  4. 4.
    H. Risken, K. Nummedal, J. Appl. Physics 39, 4662 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    H. Risken, C. Schmid, W. Weidlich, Z. Physik, 194, 337 (1966)ADSCrossRefGoogle Scholar
  6. 6.
    H. Haken, Advanced Synergetics, Springer Series in Synergetics, Vol. 20, Springer, Berlin (1983)Google Scholar
  7. 7.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  8. 8.
    H. Risken, K. Nummedal, Phys. Lett. 26A, 275 (1968)Google Scholar
  9. 9.
    R. Graham, H. Haken, Z. Physik 213, 420 (1968)ADSCrossRefGoogle Scholar
  10. 10.
    G.E. Forsythe, W.R. Wasow: Finite-Difference Methods for Partial Differential Equations, Wiley, New York (1967)Google Scholar
  11. 11.
    P.R. Gerber, M. Büttiker, Z. Physik B33, 219 (1979)ADSGoogle Scholar
  12. 12.
    M. Mayr, H. Risken, H.D. Vollmer, Optics Comm. 36, 480 (1981)ADSCrossRefGoogle Scholar
  13. 13.
    A.P. Kazantsev, S.G. Rautian, G.I. Surdutovich, Sov. Phys. JETP 27, 756 (1968)ADSGoogle Scholar
  14. 14.
    L.A. Lugiato, P. Mandel, S.T. Dembinski, A. Kossakowski, Phys. Rev. A18, 238 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    H. Knapp, H. Risken, H.D. Vollmer, Appl. Phys. 265 (1978)Google Scholar
  16. 16.
    J.C. Antoranz, M.G. Velarde, Optics Comm. 38, 61 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    E. Arimondo, F. Casagrande, L.A. Lugiato, P. Glorieux, Appl. Phys. B30, 57 (1983)CrossRefGoogle Scholar
  18. 18.
    L.W. Casperson, J. Opt. Soc. Am. B2, 993 (1985)Google Scholar
  19. 19.
    L.A. Lugiato, L.M. Narduci, E.V. Eschenazi, D.K. Bandy, N.B. Abraham, Phys. Rev. A32, 1563 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    R. Bonifacio (ed.), Dissipative Systems in Quantum Optics - Resonance Fluorescence, Optical Bistability, Superfluorescence, Springer, Berlin (1982)Google Scholar
  21. 21.
    L.A. Lugiato in: Progress in Optics XXI, p.69, Ed. E. Wolf, Elsevier Science Publisher, Amsterdam (1984)Google Scholar
  22. 22.
    K. Ikeda, Optics Comm. 30, 257 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    L.W. Hillman, J. Krasinski, R.W. Boyd, C.R. Stroud Jr., Phys. Rev. Lett. 52, 1605 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • H. Risken
    • 1
  1. 1.Abteilung für Theoretische PhysikUniversität UlmUlmFed. Rep. of Germany

Personalised recommendations