Advertisement

Generation of Squeezed States: Rydberg Atoms in a High Q Cavity

  • B. J. Dalton
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 12)

Abstract

Squeezed states [1] of the quantum EM field are characterised by having the fluctuations in one quadrature component of the electric field smaller than that for a coherent state. This is a non classical feature and the theory of the generation of squeezed states has been studied in a wide variety of non linear atom-field processes. Such states have possible applications in spectroscopy, communications, gravitational wave detection and so on. Squeezed states have recently been observed experimentally using the process of non degenerate four-wave mixing in an optical cavity [2]. References to the many papers on squeezed states may be found in the review by Walls [3] and in the recent paper by Reid and Walls [4].

Keywords

Coherent State Fokker Planck Equation Incident Field Quadrature Component Rydberg Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.P. Yuen: Phys. Rev. A13, 2226 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Slusher, L. Hollberg, B. Yurke, J.C. Mertz and J.F. Valley: Phys. Rev. Lett. 55, 2409 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    D.F. Walls: Nature 306, 141 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Reid and D.F. Walls: Phys. Rev. A31, 1622 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    A. Heidmann, J.M. Raimond and S. Reynaud: Phys. Rev. Lett. 54, 326 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    A. Heidmann, J.M. Raimond, S. Reynaud and N. Zagury: Opt. Comm. 54, 54 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    A. Heidmann, J.M. Raimond, S. Reynaud and N. Zagury: Opt. Comm. 54, 189 (1985)ADSCrossRefGoogle Scholar
  8. 8.
    B. Yurke: Phys. Rev. A23, 2563 (1981)Google Scholar
  9. 9.
    C.W. Gardiner and M.J. Collet: Phys. Rev. A31, 3761 (1985)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    P.D. Drummond and D.F. Walls: Phys. Rev. A23, 2563 (1981)MathSciNetADSGoogle Scholar
  11. 11.
    M.D. Reid and D.F. Walls: Phys. Rev. A28, 332 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    P.D. Drummond and C.W. Gardiner: J. Phys. A13, 2353 (1980)MathSciNetADSGoogle Scholar
  13. 13.
    C.W. Gardiner: Handbook of Stochastic Processes ( Academic. New York 1983 )Google Scholar
  14. 14.
    L.A. Lugiato: Lett. Nuov. Cim. 23, 609 (1978)ADSCrossRefGoogle Scholar
  15. 15.
    M.D. Reid and D.F. Walls: Phys. Rev. A32, 396 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    F.T. Arrecchi, G. Giusfredi, E. Petriella and P. Salieri: App. Phys. B29, 79 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • B. J. Dalton
    • 1
  1. 1.Physics DepartmentUniversity of QueenslandBrisbaneAustralia

Personalised recommendations