Advertisement

Myelin Palingenesis: The Reformation of Myelin by Mature Oligodendrocytes in the Absence of Neurons

  • Sara Szuchet
Part of the NATO ASI Series book series (volume 2)

Abstract

It is now established that central nervous system (CNS) axons having lost their myelin can be remyelinated (for reviews see 7, 21, 50). The new myelin is made not only by oligodendrocytes but in some loci by Schwann cells as well (4, 8). Of interest is the demonstration that in experimental model systems in rodents, remyelination of axons in vivo is carried out by oligodendrocytes that have divided just prior to forming myelin. In this respect, the cells responsible for remyelination appear to follow a pattern of division, differentiation and maturation akin to that seen during normal development and the initial laying down of myelin (21). Presumably, it was observations of this type that led Wood and Bunge (50) to speculate that the mature oligodendrocyte:”…as a terminally differentiated cell does not have the capability to construct new myelin sheaths. Remyelination, which requires construction of entirely new segments, is dependent on a prior proliferation of undifferentiated stem cells.” These authors were however careful to point out that gaps exist in our knowledge and particularly so with regard to the potential of mature oligodendrocytes to reform myelin having once divested themselves of it. This chapter will consider experiments designed to explore these gaps.

Keywords

Polypeptide Chain Myelin Basic Protein Myelin Sheath Myelin Protein Myelin Associate Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Benjamins, J. A. (1984). Protein metabolism of oligodendroglial cells in vivo. In: Oligodendroglia. 87–124.Google Scholar
  2. 2).
    Benjamins, J. A. and Smith, M. E. (1984). Metabolism of myelin. In: Myelin. 225–258.Google Scholar
  3. 3).
    Bignami, A. and Ralston, H. J. (1968). Myelination of fibrillary astroglial processes in long term Wallerian degeneration. The possible relationship to ‘status marmoratus. ’ Brain Res. 11, 710–713.PubMedCrossRefGoogle Scholar
  4. 4).
    Blakemore, W. F. (1976). Invasion of Schwann cells into the spinal cord of the rat following local injections of lysolecithin. Neuropathol. Appl. Neurobiol. 2, 21–39.CrossRefGoogle Scholar
  5. 5).
    Blakemore, W. F. (1981). Observations on myelination and remyelination in the central nervous system. Adv. Cell. Neurobio. 2, 289–307.Google Scholar
  6. 6).
    Bornstein, M. B. (1977). Differentiation of cells in primary cultures: myelination. In: Cell, Tissue, and Organ Cultures in Neurobiology. 141–146.Google Scholar
  7. 7).
    Bunge, R. P. (1968). Glial cells and the central myelin sheath. Physiol. Rev. 48, 197– 251.Google Scholar
  8. 8).
    Bunge, R. P. (1982). Cellular and non–cellular influences on myelin–forming cells. In: Neuronal–glial Cell Interrelationships. 115–130.Google Scholar
  9. 9).
    del Rio Hortega (1928). Tercera aportación al conocimiento morfoligico e interpretación functional de la Oligodendroglia. In: Real. Soc. Española Hist. Nat. XIV, 6–122.Google Scholar
  10. 10).
    Field, E. J., Hughes, D. and Raine, C. S. (1968). Electron microscopic observations on the development of myelin in cultures of neonatal rat cerebellum. J. Neurol. Sci. 8, 49–60.CrossRefGoogle Scholar
  11. 11).
    Friedrich, V. L. and Mugnaini, E. (1983). Myelin sheath thickness in the CNS is regulated near the axon. Brain. Res. 274, 329–331.PubMedCrossRefGoogle Scholar
  12. 12).
    Fulcrand, J. and Privat, A. (1977). Neuroglial reactions secondary to wallerian degeneration in the optic nerve of the postnatal rat: Ultrastructural and quantitive study. J. Comp. Neur. 176, 189–224.PubMedCrossRefGoogle Scholar
  13. 13).
    Hertz, L., Juurlink, B. H. J, and Szuchet, S. (1985). Cell cultures. In: Handbook of Neurochemistry. 603– 661.Google Scholar
  14. 14).
    Hildebrand, C. (1971). Ultrastructural and light–microscopic studies of the developing feline spinal cord white matter. II. Cell death and myelin sheath disintegration in the early postnatal period. Acta Physiol. Scand. Suppl. 364, 109–144.Google Scholar
  15. 15).
    Hildebrand, C. and Waxman, S. G. (1984). Postnatal differentiation of rat optic nerve fibers: Electron microscopic observations on the development of nodes of ranvier and axoglial relations. J. Comp. Neurol. 224, 25–37.PubMedCrossRefGoogle Scholar
  16. 16).
    Hirano, A. (1981). Structure of normal central myelinated fibers. In: Demyelinating Disease: Basic and Clinical Eiectrophysiology. 51– 68.Google Scholar
  17. 17).
    Hirano, A. and Dembitzer, H. M. (1967). A structural analysis of the myelin sheath in the central nervous system. J. Cell. Biol. 34, 555–567.PubMedCrossRefGoogle Scholar
  18. 18).
    Hirano, A., Levine, S. and Zimmerman, H. M. (1968). Remyelination in the central nervous system after cyanide intoxication. J. Neuropathol. Exp. Neurol. 27, 234– 245.Google Scholar
  19. 19).
    Lees, M. B. and Brostoff, S. W. (1984). Proteins of myelin. In.Myelin. 197–224.Google Scholar
  20. 20).
    Lillie, R. D. (1944). Myelin staining by a fixed schedule for the occasional user. Arch. Pathol. 37, 392–395.Google Scholar
  21. 21).
    Ludwin, S. K. (1981). Pathology of demyelination and remyelination. In: Demyelinating Disease: Basic and Clinical Eiectrophysiology. 123–168.Google Scholar
  22. 22).
    Mack, S. R. and Szuchet, S. (1981). Synthesis of myelin glycosphingolipids by isolated oligoden drocytes in tissue culture. Brasin Res. 214, 180–185.CrossRefGoogle Scholar
  23. 23).
    Mack, S. R., Szuchet, S. and Dawson, G. (1981). Synthesis of gangliosides by cultured oligoden drocytes. J. Neurosci. Res. 6, 361–367.PubMedCrossRefGoogle Scholar
  24. 24).
    Massa, P. T. and Mugnaini, E. (1982). Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: A freeze–fracture study. Neurosci. 7, 523–538.CrossRefGoogle Scholar
  25. 25).
    Massa, P. T., Szuchet, S. and Mugnaini, E. (1984). Cell–cell interactions of isolated and cultured oligodendrocytes: Formation of linear occluding junctions and expression of peculiar intramembrane particles. J. Neurosci. 4, 3128–3139.PubMedGoogle Scholar
  26. 26).
    Mirsky, R., Winter, J, Abney, E. R., Pruss, R. M., Gavrilovic, J. and Raff, M. C. (1980). Myelin–specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J. Cell. Biol. 84, 483– 494.Google Scholar
  27. 27).
    Norton, W. T. (1981). Biochemistry of myelin. Adv. Neurol. 31, 93–121.Google Scholar
  28. 28).
    Pereyra, P. M., Braun, P. E., Greenfield, S. and Hogan, E. L. (1983). Studies on subcellular fractions which are involved in myelin membrane assembly: Labelling of myelin proteins by a double radioisotope approach indicates developmental relationships. J. Neurochem. 41, 974–988.Google Scholar
  29. 29).
    Peters, A. (1964). Further observations on the structure of myelin sheaths in the central nervous sys tem. J. Cell. Biol. 20, 281–296.PubMedCrossRefGoogle Scholar
  30. 30).
    Peters, A., Palay, S. L. and Webster, H. D. F. (1976). The Fine Structure of the Nervous System: The Neurons and Supporting Cells, W. B. Saunders Company, Philadelphia.Google Scholar
  31. 31).
    Pfeiffer, S. E. (1984). Oligodendrocyte development in cultures systems. In: Oligodendroglia. 233–298.Google Scholar
  32. 32).
    Raine, C. S. (1984). Morphology of myelin and myelination. In: Myelin. 1–50.Google Scholar
  33. 33).
    Rosenbluth, J. (1966). Redundant myelin sheaths and other ultrastructural features of the toad cerebellum. J. Cell. Biol. 28, 73– 93.Google Scholar
  34. 34).
    Ross, L. L., Bornstein, M. B. and Lehrer, G. M. (1962). Electron microscopic observations of rat and mouse cerebellum in tissue culture. J. Cell. Biol. 14, 141 –146.Google Scholar
  35. 35).
    Sears, T. A. (1982). Neuronal–glial Cell Interrelationships, Springer–Verlag, Berlin.Google Scholar
  36. 36).
    Stensaas, L. J. and Stensaas, S. S. (1968). Astrocyte neuroglial cells, oligodendrocytes and mic rogliacytes in the spinal cord of the toad. II. Electron microscopy. Z Zellforschung 86, 184–213.Google Scholar
  37. 37).
    Sternberger, N. H. (1984). Patterns of oligodendrocyte function seen by immunocytochemistry. In: Oligodendroglia. 124 –174.Google Scholar
  38. 38).
    Szuchet, S., Arnason, B. G. W. and Polak, P. E. (1980). Separation of ovine oligodendrocytes into two distinct bands on a linear sucrose gradient. J. Neurosci. Methods 3, 7–19.PubMedCrossRefGoogle Scholar
  39. 39).
    Szuchet, S., Polak, P. E. and Yim, S. H. (1985). Subcellular fractionation of live cells: Purification and characterization of oligodendrocyte plasma membrane. J. Neurochem. 44. Suppl., 2, 142.Google Scholar
  40. 40).
    Szuchet, S., Polak, P. E. and Yim, S. H. (1985). Mature oligodendrocytes cultured in the absence of neurons recapitulate the ontogenic development of myelin. Proc. Natl. Acad. Sci. USA, submitted.Google Scholar
  41. 41).
    Szuchet, S. and Stefansson, K. (1980). In vitro behavior of isolated oligodendrocytes. Adv. Cell. Neurobiol. 1, 313–346.Google Scholar
  42. 42).
    Szuchet, S., Stefansson, K., Wollman, R. L., Dawson, G. and Arnason, B. G. W. (1980). Maintenance of isolated oligodendrocytes in longterm culture. Brain. Res. 200, 151–164.PubMedCrossRefGoogle Scholar
  43. 43).
    Szuchet, S. and Yim, S. H. (1984). Characterization of a subset of oligodendrocytes separated on the basis of selective adherence properties. Neurosci. Res. 11, 131–144.CrossRefGoogle Scholar
  44. 44).
    Szuchet, S., Yim, S. H. and Monsma, S. (1983). Lipid metabolism of isolated oligodendrocytes maintained in long–term culture mimics events associated with myelinogenesis. Proc. Natl. Acad. Sci. USA 80, 7019–7023.PubMedCrossRefGoogle Scholar
  45. 45).
    Szuchet, S., Yim, S. H. and Polak, P. E. (1985). Oligodendrocyte–substratum interaction modulates the expression of a class of glycoproteins, submitted.Google Scholar
  46. 46).
    Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  47. 47).
    Vartanian, T., Yim, S. H., Szuchet, S. and Dawson, G. (1985). Synthesis and phosphorylation of myelin basic protein in oligodendrocyte cultures: regulatory events. In: Biochemistry of Glial Cells (in press).Google Scholar
  48. 48).
    Waxman, S. G. and Sims, T. J. (1984). Specificity in central myelination: Evidence for local regulation of myelin thickness. Brain Res. 292, 179–185.PubMedCrossRefGoogle Scholar
  49. 49).
    Wollmann, R. L., Szuchet, S., Barlow, J. and Jerkovic, M. (1981). Ultrastructural changes accompanying the growth of isolated oligodendrocytes. J. Neurosci. Res. 6, 757–769.PubMedCrossRefGoogle Scholar
  50. 50).
    Wood, P. and Bunge, R. P. (1984). The biology of the oligodendrocyte. In: Oligodendroglia. 1–46.Google Scholar
  51. 51).
    Yim, S. H., Szuchet, S. and Polak, P. E. (1985). Cultured oligodendrocytes: A role of cell–substratum interaction in phenotypic expression. J. Biol. Chem. (submitted).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Sara Szuchet
    • 1
    • 2
  1. 1.Department of NeurologyThe University of ChicagoChicagoUSA
  2. 2.The Brain Research InstituteThe University of ChicagoChicagoUSA

Personalised recommendations