Advertisement

Galactocerebroside Expression by Non-Myelin Forming Schwann Cells

  • Kristjan R. Jessen
  • Rhona Mirsky
Conference paper
Part of the NATO ASI Series book series (volume 2)

Abstract

Glycolipids have been heavily implicated in specific intercellular communication and membrane signalling events in a variety of systems (7, 9). Within the nervous system, however, it has in most cases proved difficult to implicate a defined glycolipid in a specific type of cellular interaction. One of the outstanding exceptions to this is seen in one of the simplest of all glycolipids, galactocerebroside, which is currently held to have an exclusive role in the membrane wrapping events unique to myelination.

Keywords

Glial Fibrillary Acidic Protein Schwann Cell Sympathetic Trunk Double Label Experiment Schwann Cell Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Aguayo, A. J., Charron, L. and Brady, G. M. (1976). Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and autoradiographic study. J. Neurocytol. 5, 565–573.PubMedCrossRefGoogle Scholar
  2. 2).
    Aguayo, A. J., Martin, J. B. and Bray, G. M. (1972). Effects of nerve growth factor antiserum on peripheral unmyelinated nerve fibres. Acta Neuropath. 20, 288–298.PubMedCrossRefGoogle Scholar
  3. 3).
    Aguayo, A. J., Terry, L. C. and Bray, G. M. (1973). Spontaneous loss of axons in sympathetic unmyelinated fibres of the rat during development. Brain Research 54, 360–364.PubMedCrossRefGoogle Scholar
  4. 4).
    Brostoff, S. W. (1984). Antigens of peripheral nervous systems myelin. In: Peripheral Neuropathy. ( P. J. Dyck, P. K. Thomas, R. P. Bunge, eds). Saunders, Philadelphia.Google Scholar
  5. 5).
    Cuzner, M. L., Davison, A. N. and Gregson, N. A. (1965). The chemical composition of verteb rate myelin and microsomes. J. Neurochem. 12, 469–481.PubMedCrossRefGoogle Scholar
  6. 6).
    Eccleston, P. A. and Silberberg, D. H. (1984). The differentiation of oligodendrocytes in serum-free hormone-supplemented medium. Devel. Brain Res. 16, 1–9.CrossRefGoogle Scholar
  7. 7).
    Fishman, P. H. and Brady, R. O. (1976). Biosynthesis and function of gangliosides. Science 194, 906–915.PubMedCrossRefGoogle Scholar
  8. 8).
    Friede, R. L. and Samorajski, T. (1968). Myelin formation in the sciatic nerve of the rat. J. Neuropathoi. exp. Neurol. 27, 546–570.CrossRefGoogle Scholar
  9. 9).
    Hakomori, S. (1981). Glycosphingolipids in cellular interaction differentiation and oncogenesis. Ann. Rev. Biochem. 50, 733–764.PubMedCrossRefGoogle Scholar
  10. 10).
    Jessen, K. R. and Mirsky, R. (1984). Non-myelin forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelin forming cells: a study of Ran-2, A5E3 antigen and glial fibrillary acidic protein. J. Neurocytol. 13, 923–934.PubMedCrossRefGoogle Scholar
  11. 11).
    Jessen, K. R., Morgan, L., Brammer, M. and Mirsky, R. (1985). Galactocerebroside is expressed by non-myelin forming Schwann cells in situ. J. Cell Biol, (in press).Google Scholar
  12. 12).
    Jessen, K. R., Thorpe, R. and Mirsky, R. (1984). Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. J. Neurocytol. 13, 187–200.PubMedCrossRefGoogle Scholar
  13. 13).
    Mirsky, R., Gavrilovic, J., Bannerman, P., Winter, J. and Jessen, K. R. (1985). Characterization of a plasma membrane protein present in non-myelin forming PNS and CNS glia, a subpopulation of PNS neurons, perineuronal cells and smooth muscle in adult rats. Cell Tiss. Res. (in press).Google Scholar
  14. 14).
    Mirsky, R. and Jessen, K. R. (1984). A cell surface protein of astrocytes, Ran-2, distinguishes non-myelin forming Schwann cells from myelin forming Schwann cells. Dev. Neurosci. 6, 304–316.CrossRefGoogle Scholar
  15. 15).
    Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J. and Raff, M. C. (1980). Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J. Cell Biol. 84, 483–494.PubMedCrossRefGoogle Scholar
  16. 16).
    Noble, M. and Murray, K. (1984). Purified astrocytes promote the in vitro division of bipotential glial progenitor cell. EMBO J. 3, 2243–2247.Google Scholar
  17. 17).
    Norton, W. T. and Autilio, L. A. (1966). The lipid composition of bovine brain myelin. J. Neurochem. 13, 213–222.PubMedCrossRefGoogle Scholar
  18. 18).
    Poduslo, S. E. and Norton, W. T. (1972). Isolation and some chemical properties of Oligodendroglia from calf brain. J. Neurochem. 19, 727–736.PubMedCrossRefGoogle Scholar
  19. 19).
    Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R. and Noble, M. (1983). Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides and growth characteristics. J. Neurosci, 3, 1289–1300.PubMedGoogle Scholar
  20. 20).
    Raff, M. C., Mirsky, R., Fields, K. L., Lisak, K. R. P., Dorfman, S. H., Silberberg, D. H., Gregson, N. A., Liebowitz, S. and Kennedy, M. C. (1978). Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274, 813–816.PubMedGoogle Scholar
  21. 21).
    Ranscht, B., Clapshaw, P. A., Price, J., Noble, M. and Seifert, W. (1982). Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocereb-roside. Proc. Natl. Acad. Sci. USA 79, 2709–2713.PubMedCrossRefGoogle Scholar
  22. 22).
    Schachner, M. (1982). Cell type specific surface antigens in the mammalian nervous system. J. Neurochem. 39, 1–8.PubMedCrossRefGoogle Scholar
  23. 23).
    Sobue, G. and Pleasure, D. (1984). Schwann cell galactocerebroside induced by derivatives of adenosine 3’,5’-monophosphate. Science 224, 72–74.PubMedCrossRefGoogle Scholar
  24. 24).
    Sternberger, N. H., Itoyama, Y., Kies, M. W. and Webster, H. de F. (1978). Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of new-born rat C.N.S. J. Neurocytol. 7, 251–263.Google Scholar
  25. 25).
    Temple, S. and Raff, M. C. (1985). Differentiation of a bipotential glial progenitor cell in single cell microculture. Nature 13, 223–225.CrossRefGoogle Scholar
  26. 26).
    Webster, H. de F. and FA Villa, J. T. (1984). Development of peripheral nerve fibers. In: Peripheral Neuropathy. ( P. J. Dyck, P. K. Thomas, E. H. Lambert, R. Bunge, eds). Saunders, Philadelphia.Google Scholar
  27. 27).
    Weinberg, H. and Spencer, P. S. (1976). Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelination. Brain Res. 113, 363–378.PubMedCrossRefGoogle Scholar
  28. 28).
    Winter, J., Mirsky, R. and Kadlubowski, M. (1982). Immunocytochemical study of the appearance of P2 in developing rat peripheral nerve: comparison with other myelin components. J. Neurocytol. 11, 351–362.PubMedCrossRefGoogle Scholar
  29. 29).
    Wood, P. M. and Williams, A. K. (1984). Oligodendrocyte proliferation and CNS myelination in cultures containing dissociated embryonic neuroglia and dorsal root ganglion neurons. Develop. Brain Res. 12, 225–241.CrossRefGoogle Scholar
  30. 30).
    Yao, J. K. (1984). Lipid composition of normal and degenerating nerve. In: Peripheral Neuropathy. ( P.J. Dyck, P. K. Thomas, R. P. Bunge, eds), pp. 510–530. Saunders, Philadelphia.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Kristjan R. Jessen
    • 1
  • Rhona Mirsky
    • 1
  1. 1.Department of Anatomy and Embryology and Centre for NeuroscienceUniversity College LondonLondonUK

Personalised recommendations