Comparative Studies of the Astrocytic Membrane in Regenerative and Non-Regenerative Central Nervous Systems

  • Hartwig Wolburg
Part of the NATO ASI Series book series (volume 2)


The enormous capacity for repair of the central nervous system after lesion is one of the most amazing properties of lower vertebrates such as fish and amphibia. In this respect one has to distinguish between neuronal reconstitution which is characterized by neuronal proliferation and reestablishment of functional connections on the one hand (1,2) and the successful neuritic outgrowth after cutting of a fiber tract on the other. Only the latter is the topic of the present chapter.


Optic Nerve Olfactory Bulb Reactive Astrocyte Lower Vertebrate Thoracic Spinal Cord 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Kirsche, W. (1983). The significance of matrix zones for brain regeneration and brain transplantation with special consideration of lower vertebrates. In: Neural tissue transplantation research, ed. by Wallace, R. B. and Das, G. D., Springer Verlag New York, Berlin, Heidelberg, Tokyo, p. 65–104.CrossRefGoogle Scholar
  2. 2).
    Maier, W., Wolburg, H. (1979). Regeneration of the goldfish retina after exposure to different doses of ouabain. Cell Tiss. Res 202, 99–118.CrossRefGoogle Scholar
  3. 3).
    Kao, C. C., Bunge, R. P., Reier, P. J. (1983). Spinal cord reconstruction. Raven Press New York.Google Scholar
  4. 4).
    Richardson, P. M.,Issa,V. M. K.,Aguayo, A. J. (1984). Regeneration of long spinal axons in the rat. J. Neurocytol 13, 165–182.PubMedCrossRefGoogle Scholar
  5. 5).
    Aguayo, A. J., Richardson, P. M., David, S., Benfey, M. (1982). Transplantation of neurons and sheath cells a tool for the study of regeneration. In: Repair and regeneration of the nervous system, ed. by Nicholls, J. G., Dahlem Konferenzen, Springer Verlag Berlin, Heidelberg, New York, p. 91–105.Google Scholar
  6. 6).
    Benfey, M., Aguayo, A. J. (1982). Extensive elongation of axons from rat brain into peripheral nerve grafts. Nature 296, 150–152.PubMedCrossRefGoogle Scholar
  7. 7).
    Adler, R., Varon, S. (1981). Neuritic guidance by polyornithin-attached materials of ganglionic origin. Develop. Biol 81, 1–11.PubMedCrossRefGoogle Scholar
  8. 8).
    Lander, A. D., Tomaselli, K, Calof, A. L., Reichardt, L. F. (1983). Studies on extracellular matrix components that promote neurite outgrowth. Cold Spring Harbor Symposia on Quantitative Biology 48, 611–624.PubMedGoogle Scholar
  9. 9).
    Newgreen, D. (1984). Spreading of explants of embryonic chick mesenchymes and epithelia on fibronectin and laminin. Cell Tiss. Res 236, 265–277.CrossRefGoogle Scholar
  10. 10).
    Rauvala, H. (1984). Neurite outgrowth of neuroblastoma cells: dependence on adhesion surface–cell surface interactions. J. Cell Biol 98, 1010–1016.PubMedCrossRefGoogle Scholar
  11. 11).
    Smalheiser, N. R., Crain, S. M., Reid, L. M. (1984). Laminin as a substrate for retinal axons in vitro. Develop. Brain Res 12, 136–140.CrossRefGoogle Scholar
  12. 12).
    Rogers, S. L., Mccarthy, J. B., Palm, S. L., Furcht, L. T., Letourneau, P.C. (1985). Neuron-specific interactions with two neurite-promoting fragments of fibronectin. J. Neurosci 5, 369–378.PubMedGoogle Scholar
  13. 13).
    Reier, P. J., Webster, H. de F. (1974). Regeneration and remyelination of Xenopus tadpole optic nerve fibres following transection or crush. J. Neurocytol 3, 591–618.PubMedCrossRefGoogle Scholar
  14. 14).
    Wolburg, H. (1981). Axonal transport, degeneration and regeneration in the visual system of the goldfish. Adv. Anat. Embryol. Cell Biol. 67, 1–94.Google Scholar
  15. 15).
    Reier, P. J., Stensaas, L. J., Guth, L. (1983). The astrocytic scar as an impediment to regeneration in the central nervous system. In: Spinal cord reconstruction, ed. by Kao, C. C., Bunge, R. P., Reier, P. J., Raven Press, New York, p. 163–195.Google Scholar
  16. 16).
    Dermietzel, R. (1984). Junctions in the central nervous system of the cat. III. Gap junctions and membrane-associated orthogonal particle complexes (MOPC) in astrocytic membranes. Cell Tiss. Res 149, 121–135.Google Scholar
  17. 17).
    Landis, D. M., Reese, T. S. (1974). Arrays of particles in freeze-fractured astrocytic membranes. J. Cell Biol 60, 316 - 320.PubMedCrossRefGoogle Scholar
  18. 18).
    Landis, D. M. D., Reese, T. S. (1981). Membrane structure in mammalian astrocytes: A review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes. J. exp. Biol 95, 35–48.PubMedGoogle Scholar
  19. 19).
    Landis, D. M. D., Reese, T. S. (1982). Regional organization of membrane structure in astrocytes. Neuroscience 7, 937–950.PubMedCrossRefGoogle Scholar
  20. 20).
    Landis, D. M. D., Weinstein, L. A. (1983). Membrane structure in cultured astrocytes. Brain Res. 276, 31–41.PubMedCrossRefGoogle Scholar
  21. 21).
    Anders, J. J., Brightman, M. W. (1979). Assemblies of particles in the cell membranes of developing, mature and reactive astrocytes. J. Neurocytol 8, 777–795.PubMedCrossRefGoogle Scholar
  22. 22).
    Anders, J. J., Brightman, M. W. (1982). Particle assemblies in astrocytic plasma membranes are rearranged by various agents in vitro and cold injury in vivo. J. Neurocytol 11, 1009–1029.PubMedCrossRefGoogle Scholar
  23. 23).
    Anders, J. J., Pagnanelli, D. M. (1979). The protein nature and arrangement of intramembranous particle assemblies in normal and reactive astrocytes. Anat. Rec 193, 470.Google Scholar
  24. 24).
    Privat, A. (1977). The ependyma and subependymal layer of the young rat: a new contribution with freeze fracture. Neuroscience 2, 447–457.PubMedCrossRefGoogle Scholar
  25. 25).
    Hatton, J. D., Ellisman, M. H. (1981). The distribution of orthogonal arrays and their relationship to intercellular junctions in neuroglia of the freeze fractured hypothalamo-neurohypophyseal system. Cell Tiss. Res 215, 309–324.CrossRefGoogle Scholar
  26. 26).
    Hatton, J. D., Ellisman, M. H. (1982). The distribution of orthogonal arrays in the freeze-fractured rat median eminence. J. Neurocytol 11, 335–349.PubMedCrossRefGoogle Scholar
  27. 27).
    Black, J. A., Waxman, S. G. (1985). Specialization of astrocytic membrane at glialimitans in rat optic nerve: freeze-fracture observations. Neurosci. Letters 55, 371–378.CrossRefGoogle Scholar
  28. 28).
    Wujek, J. R., Reier, P. J. (1984). Astrocytic membrane morphology: differences between mammalian and amphibian astrocytes after axotomy. J. Comp. Neurol 222, 607–620.PubMedCrossRefGoogle Scholar
  29. 29).
    Kästner, R. (1985). Zur Reaktion der Astrozyten nach Läsion des ZNS verschiedener Wirbeltiere. Thesis der Fakultät für Biologie, Eberhard-Karls-Universität Tübingen.Google Scholar
  30. 30).
    Raisman, G. (1985). Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons. Neuroscience 14, 237–254.PubMedCrossRefGoogle Scholar
  31. 31).
    Gotow, T., Hashimoto, P. H. (1984). Plasma membrane organization of astrocytes in elasmobranchs with special reference to the brain barrier system. J. Neurocytol. 1, 727–742.CrossRefGoogle Scholar
  32. 32).
    Wolburg, H., Kästner, R., Kurz-Isler, G. (1983). Lack of orthogonal particle assemblies and presence of tight junctions in astrocytes of goldfish. A freeze-fracture study. Cell Tiss. Res 234, 389–402.CrossRefGoogle Scholar
  33. 33).
    Wolburg, H., Kästner, R. (1984). Astroglial-axonal interrelationship during regeneration of the optic nerve in goldfish. A freeze-fracture study. J. Hirnforsch 25, 493–504.PubMedGoogle Scholar
  34. 34).
    Körte, G. E., Rosenbluth, J. (1981). Ependymal astrocytes in the frog cerebellum. Anat. Record 199, 267–279.CrossRefGoogle Scholar
  35. 35).
    Neuhaus, J., Wolburg, H. (1985). Heterogeneity of astrocytic membranes in the optic nerve and spinal cord of the lizard, Anolis carolinensis. Cell Tiss. Res. (in press).Google Scholar
  36. 36).
    Simpson, S. B. (1970). Studies on regeneration of the lizard’s tail. Am. Zool 10, 157–165.PubMedGoogle Scholar
  37. 37).
    Kalil, K., Reh, T. (1982). A light and electron microscopic study of regrowing pyramidal tract fibers. J. Comp. Neurol 211, 265–275.PubMedCrossRefGoogle Scholar
  38. 38).
    Graziadei, P. P. C., Monti Graziadei, G. A. (1978). The olfactory system: a model for the study of neurogenesis and axon regeneration in mammals. In: Neuronal plasticity, ed. by Cotman, C. W., Raven Press, New York, p. 131–153.Google Scholar
  39. 39).
    Wolburg, H., Kästner, R. (1984). Is the architecture of astrocytic membrane crucial for axonal regeneration in the central nervous system? Naturwissenschaften 71, 484–485.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Hartwig Wolburg
    • 1
  1. 1.Institute of PathologyUniversity of TübingenGermany

Personalised recommendations