Advertisement

Conditions for Neuronal Survival and Growth as Assessed by the Intracerebral Transplantation Technique in Lesion Models of the Adult CNS

  • Ole Isacson
  • Anders Björklund
  • Stephen B. Dunnett
Part of the NATO ASI Series book series (volume 2)

Abstract

The development of intracerebral grafting techniques has provided neurobiology with a new tool for analysis of structural and functional plasticity in the central nervous system (CNS). Neural grafting provides an in vivo test-system which is a complementary to in vitro cell-culture techniques for the study of cellular and trophic interactions in the CNS (1–14).

Keywords

Nerve Growth Factor Sciatic Nerve Adult Central Nervous System Ibotenic Acid Trans Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bjorklund, A. and Stenevi, U. (1971). Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Res. 31, 1–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Bjorklund, A. and Stenevi, U. (1977). Experimental reinnervation of the rat hippocampus by grafted sympathetic ganglia. Axonal regeneration along the hippocampal fimbria. Brain Res. 138, 259–270.Google Scholar
  3. 3.
    Bjorklund, A. and Stenevi, U. (1981). In vivo evidence for a hippocampal adrenergic neurot rophic factor specifically released on septal deafferentation. Brain Res. 229, 403–428.PubMedCrossRefGoogle Scholar
  4. 4.
    Svendgaard, N. Aa., Bjorklund, A. and Stenevi, U. (1975). Regenerative properties of central monoamine neurons as revealed in studies using iris transplants as targets. Adv. Anat. Embryo/. Cell Biol. 51, 1–77.Google Scholar
  5. 5.
    Kromer, L. F., Bjorklund, A. and Stenevi, U. (1981). Regeneration of the septohippocampal pathway in adult rats is promoted by utilizing embryonic hippocampal transplants as bridges. Brain Res. 210, 173–200.PubMedCrossRefGoogle Scholar
  6. 6.
    Das, G. D. (1974). Transplantation of embryonic neural tissue in the mammalian brain. Growth and differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonate rats. T. I. T. J. Life Sci. 4, 93–124.Google Scholar
  7. 7.
    Aguayo, A. J., Benfey, M. and David, S. (1983). A potential for axonal regeneration in neurons of the adult mammalian nervous system. In: Nervous system regeneration. (Eds. Haber, Perez-Polo, Hashim and Stella) pp. 327–340. Alan R. Liss, New York.Google Scholar
  8. 8.
    David, S. and Aguayo, A. J. (1981). Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933.PubMedCrossRefGoogle Scholar
  9. 9.
    Mcloon, L. K., Mcloon, S. C. and Lund, R. D. (1981). Cultured embryonic retinae transplanted to rat brain: Differentiation and formation of projections to host superior colliculus. Brain Res. 226, 15–31.Google Scholar
  10. 10.
    Gage, F. H., Bjorklund, A. and Stenevi, U. (1984). Denervation releases a neuronal survival factor in adult rat hippocampus. Nature 308, 637–639.PubMedCrossRefGoogle Scholar
  11. 11.
    Sunde, N. Aa. and Zimmer, J. (1981). Transplantation of central nervous tissue. An introduction with results and implications. Acta Neurol. Scand. 63, 323–335.Google Scholar
  12. 12.
    Dunnett, S. B., Bjorklund, A., Stenevi, U. and Iversen, S. D. (1981). Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigro striatal pathway. Brain Res. 229, 209–217.PubMedCrossRefGoogle Scholar
  13. 13.
    Schultzberg, M., Dunnett, S. B., Björklund, A., Stenevi, U., Hökfelt, T., Doc Kray, G. J. and Goldstein, M. (1984). Dopamine and cholecystokinin immunoreactive neurones in mesencephalic grafts reinnervating the neostriatum: Evidence for selective growth regulation. Neuroscience 12, 17–32.Google Scholar
  14. 14.
    Schultzberg, M., Foster, G. A., Gage, F. H., Björklund and Hökfelt, T. (1985). The transmitter phenotypy and nerve fibre outgrowth of peptide neurones in coexistence systems studied in intracerebral transplants. Acta Physiol. Scand. 124, suppl. 542, s. 55.Google Scholar
  15. 15.
    Björklund, A. and Stenevi, U. (1984). Intracerebral neural implants: Neuronal replacement and reconstruction of damaged circuitries. Ann. Rev. Neurosci. 7, 279–308.Google Scholar
  16. 16.
    Dunnett, S. B., Björklund, A. and Stenevi, U. (1983). Dopamine-rich transplants in experimental Parkinsonism. Trends in Neuroscience 6, 266–270.CrossRefGoogle Scholar
  17. 17.
    Gage, F. H., Björklund, A., Stenevi, U. and Dunnett, S. B. (1984). Intracerebral grafting in the aging brain. In: Aging in the Brain. (Eds. Gispen and Taber ) pp. 125–137. Elsevier Biomedical Press, Amsterdam.Google Scholar
  18. 18.
    Freed, W. J. (1983). Functional brain tissue transplantation: reversal of lesion-induced rotation by intraventricular substantia nigra and adrenal medulla grafts, with a note on intracranial retinal grafts. Biol. Psychiat. 18, 1205–1267.Google Scholar
  19. 19.
    Isacson, O., Brundin, P., Dawbarn, D., Kelly, P. A. T., Gage, F. H., Emson, P. C. and Björklund, A. ( 1985 a) Striatal grafts in the ibotenic acid lesioned striatum: In: Neural grafting in the Mammalian CNS. (Eds. Björklund and Stenevi) pp. 539–550. Elsevier Biomedical Press, Amsterdam.Google Scholar
  20. 20.
    Forssman, J. (1900). Zur Kenntnis des Neurotropismus. Ziegler’s Beiträge zur Patolog. Anat. XXVII, 407–430.Google Scholar
  21. 21.
    Tello, F. (1911). La influencia del neurotropismo en la regeneración de los centros nerviosos. Trab. Lab. Invest. Biol. Univ. Madrid 9, 123–159.Google Scholar
  22. 22.
    Hamburger, V. (1976). The developmental history of the motor neuron. Neuroscience 15, 1–37.Google Scholar
  23. 23.
    Hendry,I. A. and Cambell, I. (1976). Control in the development of the vertebrate sympathetic nervous system. Rev. Neurosci. 2, 149–178.Google Scholar
  24. 24.
    Jacobson, M. (1978). In: Developmental Neurobiology, pp. 216–217. Plenum Press, New York.Google Scholar
  25. 25.
    Landmesser, L. and Pilar, G. (1978). Interactions between neurons and their targets during in vivo synaptogenesis. Fed. Proc. 47, 2016–2022.Google Scholar
  26. 26.
    Olsson, L. and Malmfors, T. (1970). Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and [3H]-noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye. Acta Physiol. Scand. Suppl. 348, 1–112.Google Scholar
  27. 27.
    Chamley, J. H. and Dowell, J. J. (1975). Specificity of nerve fibre “attraction” to autonomic effect tor organs in tissue culture. Exp. Cell Res. 90, 1–7.Google Scholar
  28. 28.
    Ebendal, T. and Jacobson, C. O. (1977). Tests of possible role of NGF in neurite outgrowth stimulation exerted by glial cells and heart explants in culture. Brain Res. 131, 373–378.PubMedCrossRefGoogle Scholar
  29. 29.
    Coughlin, M. D., Dibner, M. D., Boyer, M. and Black, I. B. (1978). Factors regulating development of an embryonic mouse sympathetic ganglion. Develop. Biol. 66, 513–528.Google Scholar
  30. 30.
    Bjerre, B., Björklund, A. and Edvards, D. C. (1974). Axonal regeneration of peripheral adrenergic neurons: Effects of antiserum to nerve growth factor in mouse. Cell Tiss. Res. 148, 441–476.Google Scholar
  31. 31.
    Aguayo, A. J., Bjorklund, A., Stenevi, U. and Carlstedt, T. (1984). Fetal mesencephalic neurons survive and extend long axons across peripheral nervous system grafts inserted into the adult rat striatum. Neurosci. Lett. 45, 53–58.Google Scholar
  32. 32.
    Bjorklund, A., Stenevi, U., Schmidt, R. H., Dunnett, S. B. and Gage, F. H. (1983). Intracerebral grafting of neuronal cell suspension. II. Survival and growth of nigral cells implanted in different brain sites. Acta Physiol. Scand. Suppl. 522, 11–22.Google Scholar
  33. 33.
    Lindsay, R. M. (1979). Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurones, Nature 282, 80–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Lindsay, R. M., Barber, P. C., Sherwood, M. R. C., Zimmer, J. and Raisman, G. (1982). Astrocyte cultures from adult rat brain. Derivation, characterization and neurotrophic properties of pure astroglial cells from corpus callosum. Brain Res. 243, 329–343.Google Scholar
  35. 35.
    Schwab, M. E., Otten, U., Agid, Y. and Thoenen, H. (1979). Nerve growth factor ( NGF) in the rat CNS absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168, 473–483.Google Scholar
  36. 36.
    Thoenen, H., Korsching, S., Heumann, R. and Acheson, A. (1985). Nerve growth factor. In:Ciba Foundation Symposium on growth factors in biology and medicine. London, (in press).Google Scholar
  37. 37.
    Black, I. B. and Petito, C. K. (1977). Regulation of the growth and development of sympathetic neurons in vivo. Prog. Clin. Biol. Res. 15, 61–71.Google Scholar
  38. 38.
    Varon, S. and Bunge, R. P. (1978). Trophic mechanism in the peripheral nervous system. Ann. Rev. Neurosci. 1, 327–361.Google Scholar
  39. 39.
    Gage, F. H. and Bjorklund, A. (1985). Enhanced graft survival in the hippocampus following selective denervation. Neuroscience (in press).Google Scholar
  40. 40.
    Toniolo, G., Dunnett, S. B., Hefti, F. and Will, B. (1985). Acetylcholine-rich transplants in the hippocampus: influence of intrinsic growth factors and application of NGF on choline acetyl- transferase activity. Brain Res. (in press).Google Scholar
  41. 41.
    Brundin, P., Isacson, O., Gage, F. H. and Bjorklund, A. (1985). Intrastriatal grafting of dopamine-containing neuronal cell suspensions: effects of mixing with target and non-target cells. Dev. Brain Res. (in press).Google Scholar
  42. 42.
    Dl Porzio, U., Daguet, M. C., Glowinski, J. and Prochiantz, A. (1980). Effect of striatal cells on in vitro maturation of mesencephalic dopaminergic neurons grown in serum-free conditions. Nature 2QQ, 370–373.Google Scholar
  43. 43.
    Prochiantz, A., Daguet, M.C., Herbert, A. and Glowinski, J. (1981). Specific stimulation of in vitro maturation of mesencephalic dopaminergic neurons by striatal membranes. Nature 293, 570–572.PubMedCrossRefGoogle Scholar
  44. 44.
    Hemmendinger, L. M., Garber, B. B., Hoffman, P. C. and Heller, A. (1981). Target neuron- specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc. Natl. Acad. Sci. USA 78, 1264–1268.Google Scholar
  45. 45.
    Schmidt, R. H., Bjorklund, A. and Stenevi, U. (1981). Intracerebral grafting of dissociated CNS tissue suspensions: A new approach for neuronal transplantation to deep brain sites. Brain Res. 218, 347–356.Google Scholar
  46. 46.
    Isacson, O., Brundin, P., Kelly, P. A. T., Gage, F. H. and Bjorklund, A. (1984). Functional neuronal replacement by grafted striatal neurones in the ibotenic-acid-lesioned rat striatum. Nature 311, 458–460.PubMedCrossRefGoogle Scholar
  47. 47.
    Isacson, O., Brundin, P., Gage, F. H. and Bjorklund,A. ( 1985 b). Neural grafting in a rat model of Huntington’s disease: Progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 4, 799–817.Google Scholar
  48. 48.
    Deckel, A. W., Robinson, R. G., Coyle, J. T. and Sanberg, P. R. (1983). Reversal of long-term locomotor abnormalities in the Kainic acid model of Huntington’s disease by day 18 fetal striatal implants. Eur. J. Pharm. 93, 287–288.Google Scholar
  49. 49.
    Pritzel, M., Isacson, O., Brundin, P., Wiklund, L. and Björklund, A. (1985). Fibre connections of grafted caudatus putamen in the rat: a WGA-HRP study. Exp. Brain Res. (in press).Google Scholar
  50. 50.
    Isacson, O., Dunnett, S. B. and Björklund, A. (1985). Graft-induced behavioural recovery in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 83, 2728–2732.Google Scholar
  51. 51.
    Coyle, J. T. and Schwarcz, R. (1983). The use of excitatory amino acids as selective neurotoxins In: Handbook of Chemical Neuroanatomy 1, pp. 508–527. ( Eds. Björklund and Hökfelt). Elsevier, Amsterdam.Google Scholar
  52. 52.
    Björklund, H., Strömberg, I., Dahl, D., Sundström, E., Jonsson, G., Schwarcz, R. and Olson, L. (1985). Transient and permanent gliotic reactions as a response to selective neurotoxic lesions. Acta Physiol. Scand. 124, suppl. 542, s. 53.Google Scholar
  53. 53.
    Isacson, O., Fischer, W., Wictorin, K., Dawbarn, D. and Björklund, A. (1986). Reactive astrocytic response in the striatum and its projection areas after excitotoxic striatal lesions. Neuros- cience (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Ole Isacson
    • 1
  • Anders Björklund
    • 1
  • Stephen B. Dunnett
    • 2
  1. 1.Dept. of HistologyUniversity of LundLundSweden
  2. 2.Dept. of Experimental PsychologyUniversity of CambridgeCambridgeEngland

Personalised recommendations