Regulation of Astrocytic High Affinity Uptake of Transmitter Amino Acids by Neuronal Signaling

  • Arne Schousboe
  • Jørgen Drejer
  • Orla M. Larsson
  • Eddi Meier
Conference paper
Part of the NATO ASI Series book series (volume 2)

Abstract

A major part of the neurotransmission processes in the central nervous system is mediated by the two amino acids L-glutamate and GABA, the former acting as an excitatory neurotransmitter and the latter as an inhibitory neurotransmitter (1). Termination of such neuronal activity is brought about by high affinity transport processes of the amino acids into presynaptic nerve endings as well as into astrocytic processes which enwrap the synapses (2–6). When considering quantitative aspects of these inactivation processes the conclusion is reached that in the case of glutamate the majority of the neuronally released transmitter is subsequently taken up into astrocytes (7, 8). In the case of GABA, on the other hand, the astrocytic uptake is quantitatively less important than the presynaptic uptake (7, 8). Since the fate of the amino acid is strongly dependent upon the cellular location of the inactivation (8, 9) it is important to obtain knowledge about the mechanisms which may be responsible for the regulation of particularly the astrocytic uptake processes. In the present review we will discuss regulatory mechanisms by which neurons may be able to modify astrocytic high affinity transport processes for the neurotransmitter amino acids glutamate and GABA. In order to discuss such neuronal signalling it seems, however, appropriate to summarize the basic properties of the astrocytic transport processes for the two amino acid neurotransmitters.

Keywords

Glutamine NMDA Taurine Alan Stilbene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Hertz, L., Kvamme, E., Mcgeer, E. and Schousboe, A., eds. (1983). Glutamine, Glutamateand GABA in the Central Nervous System. Alan Liss Inc., New York.Google Scholar
  2. 2).
    Curtis, D. R. and Johnston, G. A. R. (1974). Amino acid transmitters in the mammalian central nervous system. Ergb. Physiol. 69, 97–188.Google Scholar
  3. 3).
    Krnjevic, K. (1974). Chemical nature of synaptic transmission in vertebrates. Phys. Rev. 54, 418–540.Google Scholar
  4. 4).
    Schousboe, A. (1981). Transport and metabolism of glutamate and GABA in neurons and glial cells. Int. Rev. Neurobiol. 22, 1–45.PubMedCrossRefGoogle Scholar
  5. 5).
    Schousboe, A. (1982). Metabolism and function of neurotransmitters. In: NeuroscienceApproached Through Cell Culture. ( Pfeiffer, S.E. ed.) Vol. 1, pp. 107–141. CRC Press, Boca Raton, Florida.Google Scholar
  6. 6).
    Hosli, E., Schousboe, A. and Hosli, L. (1985). Amino acid uptake. In: Adv. Cell. Neurobiol. (Fedoroff, S. and Vernadakis, A., eds.) Academic Press, N.YGoogle Scholar
  7. 7).
    Schousboe, A., Larsson, 0. M., Drejer, J., Krogsgaard-Larsen, P. and Hertz, L. (1983). Uptake and release processes for glutamine, glutamate and GABA in cultured neurons and astrocytes. In: Glutamine, Glutamate and GABA in the Central Nervous System. ( Hertz, L., Kvamme, E. McGeer, E. G. and Schousboe, A., eds.) pp. 297–315. Alan R. Liss, Inc. N.Y.Google Scholar
  8. 8).
    Hertz, L. and Schousboe, A. (1985). Role of astrocytes in compartmentation of amino acid and energy metabolism. In: Adv. Cell. Neurobiol. (Fedoroff, S. and Vernadakis, A., eds.) Academic Press, N.Y., in pressGoogle Scholar
  9. 9).
    Hertz, L., Yu, A. C. H., Potter, R. L., Fisher, T. E. and Schousboe, A. (1983). Metabolic fluxes from glutamate and towards glutamate in neurons and astrocytes in primary cultures. In: Glutamine, Glutamate, and GABA in the Central Nervous System. ( Hertz, L., Kvamme, E., McGeer, E. G. and Schousboe, A., eds.) pp. 327–342, Alan R. Liss, Inc., New York.Google Scholar
  10. 10).
    Balcar, V. J., Borg, J. and Mandel, P. (1977). High affinity uptake of L-glutamate and L-aspartate by glial cells. J. Neurochem. 28, 87–93.PubMedCrossRefGoogle Scholar
  11. 11).
    Schousboe, A., Svenneby, G. and Hertz, L. (1977). Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29, 999–1005.PubMedCrossRefGoogle Scholar
  12. 12).
    Hertz, L., Schousboe, A., Boechler, N., Mukerji, S. and Fedoroff, S. (1978). Kinetic charcteristics of the glutamate uptake into normal astrocytes in culture. Neurochem. Res. 3,1 –14.Google Scholar
  13. 13).
    Drejer, J., Larsson, O. M. and Schousboe, A. (1982). Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions. Exp. Brain Res. 47, 259–269.PubMedCrossRefGoogle Scholar
  14. 14).
    Drejer, J., Larsson, 0. M. and Schousboe, A. (1983). Characterization of uptake and release processes for D- and L-aspartate in primary cultures of astrocytes and cerebellar granule cells. Neurochem. Res. 8, 231–243.PubMedCrossRefGoogle Scholar
  15. 15).
    Hertz, L. (1979). Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13, 277–323.PubMedCrossRefGoogle Scholar
  16. 16).
    Schousboe, A. and Hertz, L. (1983). Regulation of glutamatergic and GABAergic neuronal activity by astroglial cells. In: Dale’s Principle and Communication Between Neurones. ( Osborne, N. N., ed.) Oxford: Pergamon Press, pp. 113–141.Google Scholar
  17. 17).
    Schousboe, A . (1978). Glutamate, GABA and taurine in cultured, normal astrocytes. In: Dynamic Properties of Glia Cells. ( Schoffeniels, E., Franck, G., Tower, B. B. and Hertz, L., eds.) pp. 173–182, Pergamon Press, Oxford.Google Scholar
  18. 18).
    Kanner, B. I. and Sharon, I. (1978). Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochemistry 17, 3949–3953.PubMedCrossRefGoogle Scholar
  19. 19).
    Wheeler, D. D. and Hollingsworth, R. G. (1978). A model of high affinity glutamic acid transport by cortical synaptosomes from the Long-Evans rat. J. Neurochem. 30, 1311–1319.PubMedCrossRefGoogle Scholar
  20. 20).
    Waniewski, R. A. and Martin, D. L. (1983). Selective inhibition of glial versus neuronal uptake of L-glutamic acid by SITS. Brain Res. 268, 390–394.PubMedCrossRefGoogle Scholar
  21. 21).
    Waniewski, R. A. and Martin, D. A. (1984). Characterization of L-glutamic acid transport by glioma cells in culture: Evidence for sodium-independent, chloride-dependent high affinity influx. J. Neurosci. 4, 2237–2246.Google Scholar
  22. 22).
    Cabantchik, Z. I. and Rothstein, A. (1972). The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 10,311 -330.Google Scholar
  23. 23).
    Schousboe, A. and Divac, I. (1979). Differences in glutamate uptake in astrocytes cultured from different brain regions. Brain. Res. 177, 407–409.PubMedCrossRefGoogle Scholar
  24. 24).
    Schousboe, A., Drejer, J. and Divac, I. (1980). Regional heterogeneity in astroglial cells. Trends Neurosci. 3,11, XIII–XIV.Google Scholar
  25. 25).
    Hansson, E. (1983). Accumulation of putative amino acid neurotransmitters, monoamines and D-Ala2-Met-enkephalinamide in primary astroglial cultures from various brain areas, visualized by autoradiography. Brain. Res. 289, 189–196.PubMedCrossRefGoogle Scholar
  26. 26).
    Henn, F. A. and Hamberger, A. (1971). Glial cell function: uptake of transmitter substances. Proc. Natl. Acad. Sci. USA 68, 2686–2690.Google Scholar
  27. 27).
    Iversen, L. L. and Kelly, J. S. (1975). Uptake and metabolism of y-aminobutyric acid by neurons and glial cells. Biochem. Pharmacol. 24, 933–938.PubMedCrossRefGoogle Scholar
  28. 28).
    Schousboe, A . (1979). Significance of the glial transport system for the inactivation of GABA and effect of structural analogues on the uptake. In: GABA-Neurotransmitters. Pharmacochemical, Biochemical and Pharmacological Aspects. ( Krogsgaard-Larsen, P., Scheel-Kruger, J. and Kofod, H., eds.) pp. 263–280, Munksgaard, CopenhagenGoogle Scholar
  29. 29).
    Schousboe, A . (1979). Effects of GABA-analogues on the highaffinity uptake of GABA in astrocytes in primary cultures. In: GABA-Biochemistry and CNS-Functions (Mandel, P. and F. V. DeFeudis, eds.) Adv. Exp. Med. Biol. 123, 219–237. Plenum Press, N.YGoogle Scholar
  30. 30).
    Schousboe, A., Krogsgaard-Larsen, P., Svenneby, G. and Hertz, L. (1978). Inhibition of the high affinity, net uptake of GABA into cultured astrocytes by /3-proline, nipecotic acid and other compoundsBrain Res 153, 623–626.Google Scholar
  31. 31).
    Schousboe, A., Thorbek, P., Hertz, L. and Krogsgaard-Larsen, P. (1979). Effects of GABA analogues of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J. Neurochem. 33,181–189.Google Scholar
  32. 32).
    Schousboe, A., Hertz, L., Larsson, O. M. and Krogsgaard-Larsen, P. (1980). Interactions between conformationally restricted GABA analogues and the astroglial GABA carrier. In: GABA Neurotransmission: Current Developments in Physiology and Neurochemistry. (Lai, H., Fielding, S., Malick, J., Roberts, E., Shah, N. and Usdin, E., eds.) Brain Res. Bull. 5, suppl. 2,403–409. Ankho International Inc., Fayetteville, N.Y.Google Scholar
  33. 33).
    Schousboe, A., Larsson, O. M., Hertz, L. and Krogsgaard-Larsen, P. (1981). Heterocyclic GABA analogues as new selective inhibitors of astroglial GABA transport. DRUG DEV.RES. 1, 115–127.CrossRefGoogle Scholar
  34. 34).
    Larsson, O. M., Krogsgaard-Larsen, P. and Schousboe, A. (1980). High-affinity uptake of (RS)-nipecotic acid in astrocytes cultured from mouse brain. Comparison with GABA transport. J. Neurochem. 34, 970–977PubMedCrossRefGoogle Scholar
  35. 35).
    Larsson, O. M., Thorbek, P., Krogsgaard-Larsen, P. and Schousboe, A. (1981). Effect of homo-£-proline and other heterocyclic GABA analogues on GABA uptake in neurons and astroglial cells and on GABA receptor binding. J. Neurochem. 37, 1509–1516.PubMedCrossRefGoogle Scholar
  36. 36).
    Larsson, O. M., Johnston, G. A. R. and Schousboe, A. (1983). Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures. Brain Res. 260, 279–285.PubMedCrossRefGoogle Scholar
  37. 37).
    Larsson, O. M., Krogsgaard-Larsen, P. and Schousboe, A. (1985). Characterization of uptake of GABA and its analogues nipecotic acid and cis-4-OH-nipecotic acid in cultured neurons and astrocytes. Neurochem. Int. 7, (in press).Google Scholar
  38. 38).
    Schousboe, A., Larsson, O. M., Wood J. D. and Krogsgaard-Larsen, P. (1983). Transport and metabolism of GABA in neurons and glia: Implications for epilepsy. Epilepsia 24, 531–538.PubMedCrossRefGoogle Scholar
  39. 39).
    Larsson, O. M., Hertz, L. & Schousboe, A. (1980). GABA uptake in astrocytes in primary cultures: Coupling with two sodium ions. J. Neurosci. Res. 5, 469–477.Google Scholar
  40. 40).
    Kanner, B. I. (1978). Active transport of y-aminobutyric acid by membrane vesicles isolated from rat brain. Biochemistry 17, 1207–1211.PubMedCrossRefGoogle Scholar
  41. 41).
    Wheeler, D. D. and Hollingsworth, R. G. (1979). A model of GABA transport by cortical synaptosomes from the Long-Evans rat. J. Neurosci. Res. 4, 265–289.PubMedCrossRefGoogle Scholar
  42. 42).
    Larsson, O. M., Drejer, J., Hertz, L. and Schousboe, A. (1983). Ion dependency of uptake and release of GABA and (RS)-nipecotic acid studied in cultured mouse brain cortex neurons. J. Neurosci. Res 9, 291–302.PubMedCrossRefGoogle Scholar
  43. 43).
    Sellstrom, A., Venema, R. and Henn, F. (1976). Functional assessment of GABA uptake or exchange by synaptosomal fractions. Nature (Lond.) 264, 652–653.CrossRefGoogle Scholar
  44. 44).
    Martin, D. L . (1976). Carrier-mediated transport and removal of GABA from synaptic regions. In: GABA in Nervous System Function. ( Roberts, E., Chase, T. N. and Tower, D. B., eds.) Raven Press, New York,pp. 347–386Google Scholar
  45. 45).
    Drejer, J., Meier, E. and Schousboe, A. (1983). Novel neuronrelated regulatory mechanisms for astrocytic glutamate and GABA high affinity uptake. Neurosci. Lett. 37, 301–306.PubMedCrossRefGoogle Scholar
  46. 46).
    Wilkin, G. P., Levi, G., Johnstone, S. R. and Riddle, P. N. (1983). Cerebellar astroglial cells in primary culture: Expression of different morphological appearances and different ability to take up [3H]-D-aspartate and [3H]-GABA. J. Neurochem. 41, 5–45Google Scholar
  47. 47).
    Tossmann, V., Eriksson, S., Delin, A., Hagenfeldt, L., Law, D. and Ungerstedt, U. (1983). Brain amino acids measured by intracerebral dialysis in portacaval shunted animals. J. Neurochem. 41, 1046–1051.CrossRefGoogle Scholar
  48. 48).
    L. Lehmann, A., Isacsson, H. and Hamberger, A. (1983). Effects of in vivo administration of kainic acid on the extracellular amino acid pool in the rabbit hippocampus. J. Neurochem. 40, 1314–1320.Google Scholar
  49. 49).
    Benveniste, H., Drejer, J., Schousboe, A. and Diemer, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374.PubMedCrossRefGoogle Scholar
  50. 50).
    Balcar, V. J., Mark, J., Borg, J. and Mandel, P. (1979). High-affinity uptake of y-aminobutyric acid in cultured glial and neuronal cells. Neurochem. Res. 4, 339–354.PubMedCrossRefGoogle Scholar
  51. 51).
    Astrup, J., Symon, L., Branston, N. M. and Lassen, N. A. (1977). Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8, 51–57.PubMedCrossRefGoogle Scholar
  52. 52).
    Prince, D. A., Pedley, T. A. and Ransom, B. R. (1978). Fluctuations in ion concentrations during excitation and seizures. In: Dynamic Properties ofGlia Cells. ( Schoffeniels, E., Franck, G., Tower, D. B. and Hertz, L., eds.) Pergamon Press. Oxford, pp. 281–303.Google Scholar
  53. 53).
    Hansen, A. J., Gjedde, A. and Siemkowicz, E. (1980). Extracellular potassium and blood flow in the post-ischemic rat brain. Pflugers Arch. 389, 1–7.PubMedCrossRefGoogle Scholar
  54. 54).
    Drejer, J., Benveniste, H. Diemer, N. H. and Schousboe, A. (1985). The cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J. Neurochem. 45, 145–151.PubMedCrossRefGoogle Scholar
  55. 55).
    Schousboe, A., Hertz, L., and Svenneby, G. (1977). Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2, 217–229CrossRefGoogle Scholar
  56. 56).
    Bosley, T. M., Woodhams, P. L., Gordon, R. D., and Balazs, R. (1983). Effects of anoxia onthe stimulated relese of amino acid neurotransmitters in the cerebellum in vitro. J. Neurochem. 40, 189 - 201.PubMedCrossRefGoogle Scholar
  57. 57).
    Levi, G. and Ciotti, M. T. (1983). Glutamate and GABA localization and evoked release in cerebellar cells differentiating in culture. In: Glutamine, Glutamate and GABA in the Central Nervous System. ( Hertz, L., Kvamme, E., McGeer, E. G. and Schousboe, A., eds.) pp. 493–508. Alan R. Liss Inc., N.Y.Google Scholar
  58. 58).
    Lim, R., Mitsonobu, K. and LI, W. K. P. (1973). Maturation-stimulation effect of brain extract anddibutyryl cyclic AMP on dissociated embryonic brain cells in culture. Exp. Cell Res. 79, 243–246.PubMedCrossRefGoogle Scholar
  59. 59).
    Lim, R., Troy, S. S. and Turriff, D. E. (1977). Fine structure of cultured glioblasts before and afterstimulation by a glia maturation factor. Exp. Cell Res. 106, 357–372.PubMedCrossRefGoogle Scholar
  60. 60).
    Pettmann, B., Sensenbrenner, M. and Labourdette, G. (1980). Isolation of a glial maturation factor from beef brain. FEBS Lett. 118, 195–199.PubMedCrossRefGoogle Scholar
  61. 61).
    Pettmann, B., Weibel, M., Daune, G., Sensenbrenner, M. and Labourdette, G. (1982). Stimulation of proliferation and maturation of rat astroblasts in serum-free culture by an astroglial growth factor. J. Neurosci. Res. 8, 463–476.PubMedCrossRefGoogle Scholar
  62. 62).
    Sensenbrenner, M., Devilliers, G., Bock, E. and Porte, A. (1980). Biochemical and ultrastructural studies of cultured rat astroglial cells. Effect of brain extract and dibutyryl cyclic AMP on glial fibrillary acidic protein and glial filaments. Differentiation 17, 51–61.PubMedCrossRefGoogle Scholar
  63. 63).
    Haugen, A. and Laerum, 0. D. (1978). Induced glial differentiation of fetal brain cells in culture: Anultrastructural study. Brain Res. 150, 225–238.PubMedCrossRefGoogle Scholar
  64. 64).
    Hanson, G. R. and Partlow, L. M. (1980). A comparison of two factors affecting the proliferation of non-neuronal (glial) cells in vitro. Brain Res. 192, 371–381.PubMedCrossRefGoogle Scholar
  65. 65).
    Hanson, G. R., Partlow, L. M. and Iversen, P. L. (1982). Neuronal stimulation of non–neuronal(glial) cell proliferation: Lack of specificity between different regions of the nervous system. Dev. Brain. Res. 3, 547–555.CrossRefGoogle Scholar
  66. 66).
    Hertz, L., Juurlink, B.H.J, and Szuchet, S. (1985). Cell Cultures. In: Handbook of Neurochemistry, ( Lajtha, A., ed.) Vol. 8, 603–661. Plenum Press, N.Y.Google Scholar
  67. 67).
    Hertz, L., and Schousboe, A. (1986). Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. I. Differentiated cells. In: Model Systems of Development and Aging of the Nervous System. (Vernadakis, A. and Giacobini, E., eds.) M. Nijhoff Publ. Comp. BostonGoogle Scholar
  68. 68).
    Schousboe, A. and Hertz, L. (1986). Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter function. II. Developmental aspects. In: Model Systems of Development and Aging of the Nervous System. (Vernadakis, A. and Giacobini, E., eds.) M. Nijhoff Publ. Comp. BostonGoogle Scholar
  69. 69).
    Meier, E. and Schousboe, A. (1982). Differences between GABA receptor binding to membranes from cerebellum during postnatal development and from cultured cerebellar granule cells. Dev. Neurosci. 5, 546–553.PubMedCrossRefGoogle Scholar
  70. 70).
    Meier, E., Drejer, J. and Schousboe, A. (1984). GABA induces functionally active low-affinitive GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43, 1737–1744.PubMedCrossRefGoogle Scholar
  71. 71).
    Slevin, J. T., Johnston, M. V., Biziere, K. and Coyle, J. T. (1982). Methylazoxymethanol acetate ablation of mouse cerebellar granule cells: effects on synaptic neurochemistry. Dev. Neurosci. 5, 3–12Google Scholar
  72. 72).
    Drejer, J., Honore, T., Meier, E. and Schousboe, A. (1985). Pharmacologically distinct glutamate receptors on cerebellar granule cells. Science (Submitted).Google Scholar
  73. 73).
    Defeudis, F. V., Ossola, L., Schmitt, G. and Mandel, P. (1979). High-affinity binding of [3H]-muscimol to subcellular particles of a neuron enriched culture of embryonic rat brain. Neurosci. Lett. 14,195–199PubMedCrossRefGoogle Scholar
  74. 74).
    Drejer, J., Honore, T. and Schousboe, A. (1985). Glutamate induced transmitter release from cultured neurons mediated via excitatory amino acid receptors. Acta Neurol. Scand. (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Arne Schousboe
    • 1
  • Jørgen Drejer
    • 2
  • Orla M. Larsson
    • 3
  • Eddi Meier
    • 1
  1. 1.Department of Biochemistry APanum InstituteDenmark
  2. 2.University of CopenhagenFerrosan Research DivisionDenmark
  3. 3.Søborg and Department of Nuclear MedicineState University HospitalCopenhagenDenmark

Personalised recommendations