Advertisement

Neurite Outgrowth Induced by Adhesive Proteins

  • Heikki Rauvala
  • Yrjö Mähönen
  • Jukkapekka Jousimaa
  • Jussi Merenmies
  • Dan Lindholm
  • Matti Vuento
Part of the NATO ASI Series book series (volume 2)

Abstract

Outgrowth of neurites during development and regeneration in central and peripheral nervous systems involves mechanisms based on soluble neurite-promoting molecules, like the nerve growth factor (1) and other diffusible substances (2–6). Adhesion of neurons to other cells or to the surrounding extracellular matrix is also thought to play an important role in the outgrowth of neurites (7). Thus, specialized regions of the neurons identified as growth cones adhere to surfaces of other cells or to other extracellular surfaces, and these adhesions are thought to guide axonal growth (7).

Keywords

Nerve Growth Factor Neuroblastoma Cell Neurite Outgrowth Neural Cell Adhesion Molecule Nonneuronal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Calissano, P., Cattaneo, A., Bioccca, S., Aloe, L., Mercanti, D. and LEVI-Montalcini, R. (1984). The nerve growth factor. Established findings and controversial aspects. Exp. Cell Res., 154, 1–9.PubMedCrossRefGoogle Scholar
  2. 2).
    Lindsay, R. M. (1979). Adult rat brain astrocytes support survival of both NGF-dependent and NGF- insensitive neurones. Nature 282, 80–82.PubMedCrossRefGoogle Scholar
  3. 3).
    Manthorpe, M., Nieto-Sampedro, M., Skaper, S. D., Lewis, E. R., Barbin, G., Longo, F. M., Cotman, C. W. and Varon, S. (1983). Neuronotrophic activity in brain wounds of the developing rat. Correlation with implant survival in the wound cavity. Brain Res. 267, 47–56.PubMedCrossRefGoogle Scholar
  4. 4).
    Varon, S., Skaper, S. D., Barbin, G., Selak, I. and Manthorpe, M. (1984). Low molecular weight agents support survival of cultured neurons from the central nervous system. J. Neuroscit, 654–658.Google Scholar
  5. 5).
    Turner, J. E., Barde, Y.-A., Schwab, M. E. and Thoenen, H. (1983). Extract from brain stimulates neurite outgrowth from fetal rat retinal explants. Dev. Brain Res. 6,77 –83.CrossRefGoogle Scholar
  6. 6).
    Muller, H. W., Beckh, S. and Seifert, W. (1984). Neurotrophic factor for central neurons. Proc. Natl. Acad. Sci. USA 81, 1248–1252.PubMedCrossRefGoogle Scholar
  7. 7).
    Letourneau, P. C. (1975). Cell-to-substratum adhesion and guidance of axonal elongation. Dev. Biol. 44, 92–101.PubMedCrossRefGoogle Scholar
  8. 8).
    Rauvala, H. (1983). Cell surface carbohydrates and cell adhesion. Trends Biochem. Sci. 8, 323–325.CrossRefGoogle Scholar
  9. 9).
    Rauvala, H. (1984). Neurite outgrowth of neuroblastoma cells: dependence on adhesion surface-cell surface interactions. J. Cell Biol. 98, 1010–1016.PubMedCrossRefGoogle Scholar
  10. 10).
    Jousimaa, J., Merenjdles, J. and Rauvala, H. (1984). Neurite outgrowth of neuroblastoma cells induced by proteins covalently coupled to glass coverslips. Eur. J. Cell Biol. 35, 55–61.PubMedGoogle Scholar
  11. 11).
    Goridis, C., Deagostinl-Bazin, H., Hirn, M., Hirsch, M.-R., Rougon, G., Sadoul, R., Langby, O. K., Gombos, G. and Finne, J. (1983). Neural surface antigens during nervous system development. Cold Spring Harbor Symp. Quant. Biol. XLVIII, 527–537.Google Scholar
  12. 12).
    Edelman, G. M. (1983). Cell adhesion molecules. Science 219,450 - 457.Google Scholar
  13. 13).
    Rutishauser, U. (1984). Developmental biology of a neural cell adhesion molecule. Nature 310, 549–554.PubMedCrossRefGoogle Scholar
  14. 14).
    Yamada, K. M., Yamada, S. S. and Pastan, I. (1976). Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc. Natl. Acad. Sci. USA 73, 1217–1221.PubMedCrossRefGoogle Scholar
  15. 15).
    Akers, R. M., Mosher, D. F. and Lilien, J. E. (1981). Promotion of retinal neurite outgrowth by substratum bound-fibronectin. Dev. Biol. 86, 179–188.PubMedCrossRefGoogle Scholar
  16. 16).
    Baron Van Evercooren, A., Kleinman, H. K., Ohno, S., Maragos, P., Schwartz, J. P. and Dubois-Dalcq, M. E. (1982). Nerve growth factor, laminin and fibronectin promote neurite growth in human fetal sensory ganglia cultures. J. Neurosci. Res. 8, 179–194.CrossRefGoogle Scholar
  17. 17).
    Rogers, S. L., Letourneau, P. C., Palm, S. L., Mccarthy, J. and Furcht, L. T. (1983). Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev. Biol. 98, 212–220.PubMedCrossRefGoogle Scholar
  18. 18).
    Manthorpe, M., Engvall, E., Ruoslahti, E., Lonog, F. M., Davis, G. E. and Varon, S. (1983). Laminin promotes neurite regeneration from cultured peripheral and central neurons. J. Cell Biol. 97, 1882–1890.PubMedCrossRefGoogle Scholar
  19. 19).
    Vuento, M., Korkolainen, M., Kuusela, P. and Holtta, E. (1985). Isolation of a novel cell-attachment and spreading-promoting protein from human serum. Biochem. J. 227, 421–427.PubMedGoogle Scholar
  20. 20).
    Holmes, R. (1967). Preparation from human serum of an alpha-one protein which induces the immediate growth of unadapted cells in vitro. J. Cell Biol. 32, 297–308.PubMedCrossRefGoogle Scholar
  21. 21).
    Whateley, J. G. and Knox, P. (1980). Isolation of a serum component that stimulates the spreading of cells in culture. Biochem. J. 185, 349–354.PubMedGoogle Scholar
  22. 22).
    Barnes, D. W., Silnutzer, J., See, C. and Shaffer, M. (1983). Characterization of human serum spreading factor with monoclonal antibody. Proc. Natl. Acad. Sci. USA 80, 1362–1366.PubMedCrossRefGoogle Scholar
  23. 23).
    Stenn, K. S. (1981). Epibolin: A protein of human plasma that supports epithelial Tell movement. Proc. Natl. Acad. Sci. USA 78, 6907–6911.PubMedCrossRefGoogle Scholar
  24. 24).
    Hayman, E. G., Pierschbacher, M. D., Ohgren, Y. and Ruoslahti, E. (1983). Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc. Natl. Acad. Sci. USA 80, 4003–4007.PubMedCrossRefGoogle Scholar
  25. 25).
    Schachner, M., Schoonmaker, G. and Hynes, R. O. (1978). Cellular and subcellular localization of LETS proteins in the nervous system. Brain Res. 158, 149–158.PubMedCrossRefGoogle Scholar
  26. 26).
    Raff, M. C., Fields, X. L., Hakomori, S., Mirsky, R., Pruss, R. M. and Winter, J. (1979). Cell-type specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 174, 283–308.PubMedCrossRefGoogle Scholar
  27. 27).
    Newgreen, D. and Thiery, J.-P. (1980). Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res. 211, 269–291PubMedCrossRefGoogle Scholar
  28. 28).
    Paetau, A., Hellstrom, K., Westermark, B., Dahl, D., Haltia, M. and Vaheri, A. (1980). Mutually exclusive expression of fibronectin and glial fibrillary acidic protein in cultured brain cells. Exp. Cell Res. 129, 337–344.PubMedCrossRefGoogle Scholar
  29. 29).
    Liesi, P., Kaakkola, S., Dahl, D. and Vaheri, A. (1984). Laminin is induced in astrocytes of adult brain by injury. EMBOJ. 3, 683–686.PubMedGoogle Scholar
  30. 30).
    Bignami, A., Huu Chi, N. and Dahl, D. (1984). First appearance of laminin in peripheral nerve, cerebral blood vessels and skeletal muscle of the rat embryo. Immunofluorescence study with laminin and neurofilament antisera. Int. J. Devi. Neuroscience 2, 367–376.CrossRefGoogle Scholar
  31. 31).
    Mahonen, Y. and Rauvala, H. (1985). Adhesive membrane protein of rat brain enhances neurite outgrowth of neuroblastoma cells. Eur. J. Cell Biol. 36, 91–97.PubMedGoogle Scholar
  32. 32).
    Yavin, E. and Yavin, Z. (1974). Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. J. Cell Biol. 62, 540–546.PubMedCrossRefGoogle Scholar
  33. 33).
    Schubert, D., Lacorbiere, M., Klier, F. G. and Birdwell, C. (1983). A role for adherons in neural retina cell adhesion. J. Cell Biol. 96, 990 - 998.Google Scholar
  34. 34).
    Cole, G. J., Schubert, D. and Glaser, L. (1985). Cell substratum adhesion in chick neural retina depends upon protein-heparan sulfate inferactions. J. Cell Biol. 100, 1192–1199.PubMedCrossRefGoogle Scholar
  35. 35).
    Morgan, J. I. and Seifert, W. S. (1979). Growth factors and gangliosides: A possible new perspective in neuronal cell development. J. Supramol. Struct. 10, 111–124.PubMedCrossRefGoogle Scholar
  36. 36).
    Roisen, F. J., Bartfeld, H, Nagele, R. and Yorke, G. (1981). Ganglioside stimulation of axonal sprouting in vitro. Science 214, 577–578.PubMedCrossRefGoogle Scholar
  37. 37).
    Facci, L., Leon, A., Toffano, G., Sonnino, S., Ghidoni, R. and Tettamanti, G. (1984). Promotion of neuritogenesis in neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GMV J. Neurochem. 42, 299–305.PubMedCrossRefGoogle Scholar
  38. 38).
    Ledeen, R. (1985) Gangliosides of the neuron. Trends Neurosci. 8, 169–174.CrossRefGoogle Scholar
  39. 39).
    Schwartz, M. and Spirman, N. (1982). Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies. Proc. Natl. Acad. Sci. USA 79, 6080–6083.PubMedCrossRefGoogle Scholar
  40. 40).
    Kleinman; H. K., Martin, G. R. and Fishman, P. H. (1979). Ganglioside inhibition of fibronectin mediated cell adhesion to collagen. Proc. Natl. Acad. Sci USA 76, 3367–3371.CrossRefGoogle Scholar
  41. 41).
    Rauvala, H., Carter, W. G. and Hakomori, S. (1981). Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin. J. Cell Biol. 88, 127–137.PubMedCrossRefGoogle Scholar
  42. 42).
    Rauvala, H. and Finne, J. (1979). Structural similarity of the terminal carbohydrate sequences of glycoproteins and glycolipids. FEBS Lett. 97, 1–8.PubMedCrossRefGoogle Scholar
  43. 43).
    Rauvala, H. and Finne, J. (1980). Gangliosides of brain and of extraneural tissues: Structural relationship to protein-linked glycans. In: Structure and Function of Gangliosides, Plenum Press, New York and London. Advances in Experimental Medicine and Biology 125, 185–198.Google Scholar
  44. 44).
    Rauvala, H. and Karkkainen, J. (1977). Methylation analysis of neuraminic acids by gas chromatography-mass spectrometry. Carbohydr. Res. 56, 1–9.PubMedCrossRefGoogle Scholar
  45. 45).
    Finne, J., Krusius, T. and Rauvala, H. (1977). Occurence of disialosyl groups in glycoproteins. Biochem. Biophys. Res. Commun. 74, 405–410.PubMedCrossRefGoogle Scholar
  46. 46).
    Finne, J., Krusius, T., Rauvala, H. and Hemminki, K. (1977). The Disialosyl Group Of Glycoproteins, occurence in different tissues and cellular membranes. Eur. J. Biochem. 17, 319–323.CrossRefGoogle Scholar
  47. 47).
    Finne, J., Finne, U., Deagostini-Bazin, H. and Goridis, C. (1983). Occurrence of 2–8–linked polysialosyl units in a neural cell adhesion molecule. Biochem. Biophys. Res. Commun. 112, 482–487.PubMedCrossRefGoogle Scholar
  48. 48).
    Kennedy, D. W., Rohrbach, D. H., Martin, G. R., Momoi, T. and Yamada, K. M. (1983). The adhesive glycoprotein laminin is an agglutinin. J. Cell Physiol. 114, 257–262.PubMedCrossRefGoogle Scholar
  49. 49).
    Tsuji, S., Arita, M. and Nagai, Y. (1983). GQIB, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J. Biochem. (Tokyo) 94, 303–306.Google Scholar
  50. 50).
    Roberts, D. D., Rao, C. N., Magnani, J. L., Spitalnik, S. L., Liotta, L. A. and Ginsburg, V. (1985). Laminin binds specifically to sulfated glycolipids. Proc. Natl. Acad. Sci. USA 82, 1306–1310.PubMedCrossRefGoogle Scholar
  51. 51).
    Edgar, D., Timpl, R. and Thoenen, H. (1984). The heparin-bindlng domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBOJ. 3, 1463–1468.PubMedGoogle Scholar
  52. 52).
    Klinger, M. M., Margolis, R. U. and Margolis, R. K. (1985). Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase- agarose. J. Biol. Chem. 260, 4082–4090.PubMedGoogle Scholar
  53. 53).
    Terranova, V. P., Rao, C. N., Kalebic, T., Margulies, I. M. and Liotta, L. A. (1983). Laminin receptor on human breast carcinoma cells. Proc. Natl. Acad. Sci. USA 80, 444–448.PubMedCrossRefGoogle Scholar
  54. 54).
    Brown, S. S., Malinoff, H. L. and Wicha, M. S. (1983). Connectin: cell surface protein that binds both laminin and actin. Proc. Natl. Acad. Sci. USA 80, 5927–5930.PubMedCrossRefGoogle Scholar
  55. 55).
    Ozawa, M., Sato, M. and Muramatsy, T. (1983). Basement membrane glycoprotein laminin is an agglutinin. Biochem. J. 94, 479–485.Google Scholar
  56. 56).
    Merenmies, J., Risteli, L. and Rauvala, H.. Oxidation of tryptophan residues by N-bromosuccinimide destroys the neurite-promoting activity of laminin and of a membrane protein solubilized from brain. Manuscript in preparation.Google Scholar
  57. 57).
    Visuwanatha, T., Lawson, W. B. and Witkop, B. (1960). The action of N-bromosuccinimide on trypsinogen and its derivatives. Biochim. Biophys. Acta 40, 216–224.CrossRefGoogle Scholar
  58. 58).
    Sartin, J. L., Hugli, T. E. and Liao, T.-H. (1980). Reactivity of the tryptophan residues in bovine pancreatic deoxyribonuclease with N-bromosuccinimide. J. Biol. Chem. 255, 8633–8637.PubMedGoogle Scholar
  59. 59).
    Rao, A. G. and Neet, K. E. (1982). Tryptophan residues of the subunit of 7S nerve growth factor: Intrinsic fluorescence solute quenching and N-bromosuccinimide oxidation. Biochemistry 21, 6843–6850.PubMedCrossRefGoogle Scholar
  60. 60).
    Grinnell, F. and Minter, D. (1979). Cell adhesion and spreading factor. Chemical modification studies. Biochem. Biophys. Acta 550, 92–99.PubMedCrossRefGoogle Scholar
  61. 61).
    Jousimaa, J. and Rauvala, H. Drugs affecting adhesion and spreading of non-neuronal cells inhibit neurite outgrowth induced by laminin. Manuscript in preparation.Google Scholar
  62. 62).
    Carter, W. G., Rauvala, H. and Hakomori, S. (1981). Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate-reactive proteins (glycosidases and lectins) and fibronectin. J. Cell Biol. 88, 138–148.PubMedCrossRefGoogle Scholar
  63. 63).
    Grinnell, F. (1978). Cellular adhesiveness and extracellular substrata. Int. Rev. Cytol. 53, 65–144.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Heikki Rauvala
    • 1
  • Yrjö Mähönen
    • 1
  • Jukkapekka Jousimaa
    • 1
  • Jussi Merenmies
    • 1
  • Dan Lindholm
    • 1
  • Matti Vuento
    • 2
  1. 1.Department of Medical ChemistryUniversity of HelsinkiFinland
  2. 2.Department of BiochemistryUniversity of HelsinkiFinland

Personalised recommendations