Developmentally Regulated Glial and Neuronal Antigens Detected by Monoclonal Antibodies

  • M. S. Ghandour
  • B. Foucaud
  • G. Gombos
Conference paper
Part of the NATO ASI Series book series (volume 2)


Cell interactions must play an essential role in the implementation of the genetic programme. Cell signals during ontogenesis could modulate and, in some cases, determine choices in the processes of cell multiplication, differentiation, maturation, migration, and establishment of connections. This implies that, at molecular levels, the expression of each genetically coded signal molecule, giver (effector) and receiver (receptor), is also modulated by the preceding and the following cell interaction. Thus, in many cases the presence of signal effectors and/or receptors in a given cell should be necessary only for the required time.


Granule Cell Molecular Layer Parallel Fibre Bergmann Glia Internal Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Altman, J. (1982). Morphological development of the rat cerebellum and some of its mechanisms. In: The cerebellum, new vistas. Exp. Brain Res. Supp., 6, 8–46.Google Scholar
  2. 2).
    Barnstable, C. J. (1980). Monoclonal antibodies which recognize different cell types in rat retina. Nature, 286, 231 – 235.PubMedCrossRefGoogle Scholar
  3. 3).
    Cuello, A. C., Galfre, G. and Milstein (1979). Detection of substance P in the central nervous system by a monoclonal antibody. Proc. Natl. Acad. Sci. USA, 76, 3532–3536.PubMedCrossRefGoogle Scholar
  4. 4).
    Eisenbarth, G. S., Walsh, F. S. and Nirenberg, M. (1979). Monoclonal antibody to a plasma membrane antigen of neurons. Proc. Natl. Acad. Sci. USA, 76, 4913–4917.PubMedCrossRefGoogle Scholar
  5. 5).
    Galfre, G., Howe, S., Milstein, C., Butcher, G. and Howard, J. (1977). Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature, 266, 550–552.PubMedCrossRefGoogle Scholar
  6. 6).
    Ghandour, M. S., Langley, O. K. and Clos, J. (1983). Immunohistochemical and biochemical approaches to the development of neuroglia in the CNS, with special reference to cerebellum. Int. J. Devi. Neurosci., 1, 4II–425.Google Scholar
  7. 7).
    Ghandour, M. S., Foucaud, B. and Gombos, G. (1984). Monoclonal antibodies specific for glial and neuronal antigens in the young rat cerebellum. Neuroscience Lett, 51, 119–125.CrossRefGoogle Scholar
  8. 8).
    Goodman, C. S., Bastiani, M. J., Doe, C. Q., duLAC, S., Helfand, S.L., Kuwada, J. Y. and Thomas, J. B. (1984). Cell recognition during neuronal development. Science, 225, 1271–1279.Google Scholar
  9. 9).
    Hawkes, R., Niday, E. and Matus, A. (1982). Monoclonal antibodies identify novel neural antigens. Proc. Natl. Acad. Sci. USA, 79, 2410–2414.PubMedCrossRefGoogle Scholar
  10. 10).
    Hirn, M., Ghandour, M.S., Deagostini-Bazin, H. and Goridis, C. (1983). Molecular heterogeneity and structural evolution during cerebellar ontogeny detected by monoclonal antibody of the mouse cell surface antigen BSP-2. Brain Res, 265, 87–100.PubMedCrossRefGoogle Scholar
  11. 11).
    Kennet, R. H. and Gilbert, F. (1979). Hybrid myelomas producing antibodies against a human neuroblastoma antigen present on fetal brain. Science, 203,1120–1121.CrossRefGoogle Scholar
  12. 12).
    Köhler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 356, 495–497.CrossRefGoogle Scholar
  13. 13).
    Köhler, G. and Milstein, G. (1976). Derivation of specific antibody-producing tissue culture and tumour lines by cell fusion. Europ. J. Immunol., 6, 511–519.CrossRefGoogle Scholar
  14. 14).
    Lagenaur, C., Sommer, I. and Schachner, M. (1980). Subclass of astroglia in mouse cerebellum recognized by monoclonal antibody. Develop. Biol., 79, 367–378.PubMedCrossRefGoogle Scholar
  15. 15).
    Langley, O. K., Foucaud, B., Ghandour, M. S., de Barry, J., Schladenhaufen, Y. and Gombos, G. (1985). Developmental modified neurone-specific marker in rodent cerebellum. Neuroscience, 14, 147–157.PubMedCrossRefGoogle Scholar
  16. 16).
    Mckay, R., Raff, M. C. and Reichardt, L. F. (1981). Monoclonal antibodies to neural antigens. Cold Spring Harbor reports in the Neuroscience, Vol. 2.Google Scholar
  17. 17).
    Matthew, W. D., Tsavaler, L. L. and Reichardt, L. (1981). Identification of synaptic vesicle specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J. Cell Biol., 91, 257–269.PubMedCrossRefGoogle Scholar
  18. 18).
    Miller, R. H. and Raff, M. C. (1984). Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J. Neuroscience, 4, 585–592.Google Scholar
  19. 19).
    O’farrel, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J. biol. Chem., 250, 982–986.Google Scholar
  20. 20).
    Ross, E. M., Reis, D. J. and Joh, T. H. (1981). Monoclonal antibodies to tyrosine hydroxylase: Production and characterization. Brain Res, 208, 493–498.PubMedCrossRefGoogle Scholar
  21. 21).
    Schachner, M., Kim, S. K. and Zehnle, R. (1981). Developmental expression in central nervous system of oligodendrocytes cell surface antigens (O antigens) recognized by monoclonal antibodies. Develop. Biol., 83, 328–338.PubMedCrossRefGoogle Scholar
  22. 22).
    Sternberger. L. W., Harwell, L. L. and Sternberger, N. (1982). Neurotypy: regional individuality in rat brain detected by immunocytochemistry with monoclonal antibodies. Proc. Natl. Acad. Sci. USA, 79, 1326–1330.CrossRefGoogle Scholar
  23. 23).
    Towbin, H., Staehelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 76, 4350–4354.PubMedCrossRefGoogle Scholar
  24. 24).
    Zipser, B. and Mckay, R. (1981). Monoclonal antibodies distinguish identifiable neurones in the leech. Nature, 289, 549–554.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. S. Ghandour
    • 1
  • B. Foucaud
    • 1
  • G. Gombos
    • 1
  1. 1.Centre de Neurochimie du CNRSStrasbourg CédexFrance

Personalised recommendations