Morphological Markers in Neuro-Oncology

  • P. Kleihues
  • M. Kiessling
  • R. C. Janzer
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 77)


Like many other morphological disciplines, surgical neuropathology has been greatly advanced by the introduction of immunohistochemical methods. The assessment of antigenic marker proteins in nervous system tumors has generally led to a higher level of diagnostic accuracy. Although the spectrum of available antibodies with proven diagnostic usefulness is still limited, some previously difficult differential diagnoses have become less troublesome and ambiguous (BONNIN and RUBINSTEIN 1984). This is particularly true for the distinction of gliomas and embryonal CNS tumors from metastatic lesions of epithelial and mesenchymal origin, as well as from malignant lymphomas. In addition, immunocytochemistry has expanded our knowledge of the origin of some human brain tumors with a re-evaluation of several entities, the histogenesis and classification of which had been disputed for decades (ZÜLCH 1979) due to the lack of reliable histomorphological criteria. Thus, the identification of abundant glial fibrillary acidic protein (GFAP) in most giant cells of the ‘monstrocellular sarcoma’ has led to its re-classification as giant cell glioblastoma with a sarcoma-tous component, i.e., a variant of the glioblastoma. The presence of numerous GFAP positive cells in superficially located cerebral neoplasms of young adults previously classified as malignant mesenchymal tumors, has allowed the identification of a new and now widely acknowledged tumor type, the pleomorphic xanthoastrocytoma (KEPES et al. 1979; GRANT and GALLAGHER 1986).


Glial Fibrillary Acidic Protein Pituitary Adenoma Glioblastoma Multiforme Morphological Marker Primitive Neuroectodermal Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abo T, Balch TA (1981) Differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127: 1024–1029PubMedGoogle Scholar
  2. Achtstatter T, Moll R, Anderson A, Schwechheimer K, Kuhn C, Franke WW (1986) Cell type specificity of the expression of glial filament protein as demonstrated by monoclonal antibody. Differentiation 31: 206–227CrossRefGoogle Scholar
  3. Allan PM, Garson JA, Harper EI, Asser U, Coakham HB, Brownell B, Kemshead JT (1983) Biological characterization and clinical applications of a monoclonal antibody recognizing an antigen restricted to neuroectodermal tissues. Int J Cancer 31: 591–598PubMedCrossRefGoogle Scholar
  4. Altmannsberger M, Osbora M, Schaver A, Weber K (1981) Antibodies to different intermediate filament proteins. Cell type-specific markers on paraffin-embedded human tissues. Lab Invest 45: 427-434Google Scholar
  5. Artlieb U, Krepler R, Wiche G (1985) Expression of microtubule-associated proteins, map-1 and map-2, in human neuroblastomas and differential diagnosis of immature neuroblasts. Lab Invest 53: 684–691PubMedGoogle Scholar
  6. Baudier J, Briving C, Deinum J, Haglid K, Soerskog L, Wallin M (1982) Effect of S-100 proteins and calmodulin on Ca-induced disassembly of brain microtubule proteins in vitro. FEBS Lett 147: 165–167PubMedCrossRefGoogle Scholar
  7. Bellon G, Cavlet T, Cam Y, Pluot M, Poulin G, Pytlinska M, Bernard MH (1985) Immunohistochemi- cal localization of macromolecules in the basement membrane and extracellular matrix of human gliomas and meningeomas. Acta Neuropathol (Berl) 66: 245–252CrossRefGoogle Scholar
  8. Bigbee JW, Kosek JC, Eng LF (1977) Effects of primary antiserum dilution on staining of “antigen-rich” tissues with the peroxidase-antiperoxidase technique. J Histochem Cytochem 25: 443–447PubMedCrossRefGoogle Scholar
  9. Bignami A, Dahl D (1976) The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein ( GFA) in mammalian and submammalian vertebrates. Neuropathol Appl Neurobiol 2: 99-111Google Scholar
  10. Bignami A, Dahl D (1979) The radial glia of Müller in the rat retina and their response protein. Exp Eye Res 28: 63–69PubMedCrossRefGoogle Scholar
  11. Bock E, Dissing J (1975) Determination of enolase activity connected to the brain-specific-protein 14.3.2. Scand J Immunol 4: 31–36CrossRefGoogle Scholar
  12. Bonnin JM, Rubinstein LJ (1984) Immunohistochemistry of central nervous system tumors. Its contributions to neurosurgical diagnosis. J Neurosurg 60: 1121-1133Google Scholar
  13. Bonnin JM, Rubinstein LJ, Papasozomenos SCh, Marangos PJ (1984) Subependymal giant cell astrocytoma. Significance and possible cytogenetic implications of an immunohistochemical study. Acta Neuropathol (Berl) 62: 185-193Google Scholar
  14. Budka H (1986) Non-glial specificities of immunocytochemistry for the glial fibrillary acidic protein (GFAP). Acta Neuropathol 72: 43–54PubMedCrossRefGoogle Scholar
  15. Bullard DE, Bigner DD (1985) Applications of monoclonal antibodies in the diagnosis and treatment of primary brain tumors. J Neurosurg 63: 2–16PubMedCrossRefGoogle Scholar
  16. Burger PC, Vollmer RT (1980) Histologic factors of prognostic significance in the glioblastoma multiforme. Cancer 46: 1175–1186CrossRefGoogle Scholar
  17. Burger PC, Shibata T, Kleihues P (1986) The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: Application to surgical neuropathology. Am J Surg Pathol 10: 611-617Google Scholar
  18. Burger PC, Grahmann FC, Bliestle A, Kleihues P (1987) Differentiation in the medulloblastoma. A histological and immunohistochemical study. Acta Neuropathol (Berl) 73: 115-123Google Scholar
  19. Calissano P, Bangham AD (1971) Effect of two brain specific proteins (S-100 and 14.3.2) on cation diffusion across artificial membranes. Biochem Biophys Res Commun 43: 504–509PubMedCrossRefGoogle Scholar
  20. Chen S-H, Giblet ER (1976) Enolase: Human tissue distribution and evidence for three different loci. Ann Hum Genet 39: 277-280Google Scholar
  21. Chiu FC, Norton WT, Fields KL (1981) The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein and the fibroblast-type filament protein vimentin. J Neurochem 37: 147–155PubMedCrossRefGoogle Scholar
  22. Choi BH (1986) Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: A light and electron microscopic immunoperoxidase study. J Neuropathol Exp Neurol 45: 408–418PubMedCrossRefGoogle Scholar
  23. Choi HSH, Anderson PJ (1985) Immunohistochemical diagnosis of olfactory neuroblastoma. J Neuropathol Exp Neurol 44: 18–31PubMedCrossRefGoogle Scholar
  24. Choi BH, Kim RC (1984) Expression of glial fibrillary acidic protein in immature Oligodendroglia. Science 223: 407–409PubMedCrossRefGoogle Scholar
  25. Churg A (1985) Immunohistochemical staining for vimentin and keratin in malignant mesothelioma. Am J Surg Pathol 9: 360–365PubMedCrossRefGoogle Scholar
  26. Clark HB, Minesky JJ, Agrawal D, Pluot M (1985) Myelin basic protein and P2 protein are not immunohistochemical markers for Schwann cell neoplasms. A comparative study using antisera to S-100, P2 and myelin basic protein. Am J Pathol 121: 96-101Google Scholar
  27. Coffin CM, Mukai K, Dehner LP (1983) Glial differentiation in medulloblastomas. Histogenetic insight, glial reaction, or invasion of brain? Am J Surg Pathol 7: 555–565PubMedCrossRefGoogle Scholar
  28. Coffin CM, Wick MR, Braun JT, Dehner LP (1986) Choroid plexus neoplasms. Clinicopathologic and immunohistochemical studies. Am J Surg Pathol 10: 394-404Google Scholar
  29. Collins VP (1984) Monoclonal antibodies to glial fibrillary acidic protein in the cytologic diagnosis of brain tumors. Acta Cytol 28: 401–406PubMedGoogle Scholar
  30. Cosgrave JW, Heikkila JG, Marks A, Brown IR (1983) Synthesis of S-100 protein on free and membrane-bound polysomes of the rabbit brain. J Neurochem 40: 806–813CrossRefGoogle Scholar
  31. Dahl D (1981) The vimentin-GFAP protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neurosci Res 6: 741–748PubMedCrossRefGoogle Scholar
  32. Daimaru Y, Hashimoto H, Enjoji M (1985) Malignant peripheral nerve-sheath tumors (malignant schwannomas). An immunohistochemical study of 29 cases. Am J Surg Pathol 9: 434–444PubMedCrossRefGoogle Scholar
  33. DeArmond SJ, Fajardo M, Naughton SA, Eng LF (1983) Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res 262: 275–282PubMedCrossRefGoogle Scholar
  34. Deck JHN, Rubinstein LJ (1981) Glial fibrillary acidic protein in stromal cells of some capillary hemangioblastomas: Significance and possible implications of an immunoperoxidase study. Acta Neuropathol (Berl) 54: 173-181Google Scholar
  35. Deck JHN, Eng Lf, Bigbee J, Woodcock SM (1978) The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol (Berl) 42: 183–190CrossRefGoogle Scholar
  36. Dhillon AP, Rode J (1982) Patterns of staining for neuron-specific enolase in benign and malignant melanocytic lesions of the skin. Diagn Histopathol 5: 169–174PubMedGoogle Scholar
  37. Dixon RG, Eng LF (1981) Glial fibrillary acidic protein in the retina of the developing albino rat: An immunoperoxidase study of paraffin-embedded tissue. J Comp Neurol 195: 305-321Google Scholar
  38. Donato R (1986) S-100 proteins. Cell Calcium 7: 123–145CrossRefGoogle Scholar
  39. Donoso LA, Folberg R, Arbizo V (1985) Retinal S-antigen and retinoblastoma: A monoclonal antibody histopathologic study. Arch Ophthalmol 103: 855-857Google Scholar
  40. Drake PF, Lasek RJ (1984) Regional differences in the neuronal cytoskeleton. J Neurosci 5: 1173–1186Google Scholar
  41. Duffy PE, Graf L, Huang Y-Y, Rapport MM (1979) Glial fibrillary acidic protein in ependymomas and other brain tumors. J Neurol Sei 40: 133–146CrossRefGoogle Scholar
  42. Duffy PE, Huang Y-Y, Rapport MM, Graf L (1980) Glial fibrillary acidic protein in giant cell tumors of brain and other gliomas: A possible relationship to malignancy, differentiation, and pleomorphism of glia. Acta Neuropathol (Berl) 52: 51-57Google Scholar
  43. Eng LF (1980) The glial fibrillary acidic (GFA) proteins of the nervous system. In: Bradshaw RA, Schneider DM (eds) Proteins of the Nervous System. 2nd Edition. Raven Press, New York, pp 85–117Google Scholar
  44. Eng LF (1985) Glial fibrillary acidic protein (GFAP): The major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8: 203–214PubMedCrossRefGoogle Scholar
  45. Eng LJ, Vanderhaeghen J J, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28: 351–354PubMedCrossRefGoogle Scholar
  46. Fan K (1982) S-100 protein synthesis in cultured glioma cells is Gx-phase of cell cycle-dependent. Brain Res 237: 498–503PubMedCrossRefGoogle Scholar
  47. Friedman HS, Burger PC, Bigner SH, Trojanowski JQ, Halperin EC, Bigner DD (1985) Establishment and characterization of the human medulloblastoma tumor cell line D283 MED. J Neuropathol Exp Neurol 44: 592–605PubMedCrossRefGoogle Scholar
  48. Gambetti P, Autilio-Gambetti L, Papasozomenos SC (1981) Bodian’s silver method stains neurofilament polypeptides. Science 213: 1521–1522PubMedCrossRefGoogle Scholar
  49. Gard AL, White FP, Dutton GR (1985) Extra-neural glial fibrillary acidic protein ( GFAP) immunore- activity in perisinusoidal stellate cells of rat liver. J Neuroimmunol 8: 359-375Google Scholar
  50. Garson JA, Coakham HB, Kemshead JT, Brownell B, Harper EI, Allan P, Bourne S (1985) The role of monoclonal antibodies in brain tumor diagnosis and cerebrospinal fluid ( CSF) cytology. J Neuro-Oncol 3: 165-171Google Scholar
  51. Gerdes J (1985) An immunohistological method for estimating cell growth fractions in rapid histo-pathological diagnosis during surgery. Int J Cancer 35: 169–171PubMedCrossRefGoogle Scholar
  52. Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31: 13–20PubMedCrossRefGoogle Scholar
  53. Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710–1715PubMedGoogle Scholar
  54. Gheuens J, de Schutter E, Noppe M, Lowenthal A (1984) Identification of several forms of the glial fibrillary acidic protein, or alpha-albumin, by a specific monoclonal antibody. J Neurochem 43: 964–970PubMedGoogle Scholar
  55. Ghobrial M, Ross ER (1986) Immunocytochemistry of neuron-specific enolase: A réévaluation. In: Zimmerman HM (eds) Progress in Neuropathology, Vol. 6. Raven Press, New York, pp 199–221Google Scholar
  56. Giangaspero F, Doglioni C, Rivano MT, Pileri S, Gerdes J, Stein H (1987 a) Growth fraction in human brain tumors defined by the monoclonal antibody Ki-67. Acta Neuropathol (Berl) 74:179–182Google Scholar
  57. Giangaspero F, Kleihues P, Yasargil MG (1987 b) Metastasis of a choroid plexus papilloma 15 years after surgical resection and radiotherapy. J Neurosurg (submitted for publication)Google Scholar
  58. Giordana MT, Mauro A, Migheli A, Schiffer D (1983) Contributions of immunohistochemistry to the problem of differentiation in medulloblastoma. Ital J Neurol Sci 4: 411–415PubMedCrossRefGoogle Scholar
  59. Giordana MT, Germano I, Giaccone G, Mauro A, Migheli A, Schiffer D (1985) The distribution of laminin in human brain tumors: An immunohistochemical study. Acta Neuropathol (Berl) 67: 51-57Google Scholar
  60. Goldstein ME, Sternberger LA, Sternberger NH (1983) Microheterogeneity (“neurotypy”) of neu-rofilament proteins. Proc Natl Acad Sci USA 80: 3101–3105PubMedCrossRefGoogle Scholar
  61. Gould VE (1985) The coexpression of distinct classes of intermediate filaments in human neoplasms. Arch Pathol Lab Med 109: 984–985PubMedGoogle Scholar
  62. Gould VE, Lee I, Wiedenmann B, Moll R, Chejfec G, Franke WW (1986) Synaptophysin: A novel marker for neurons, certain neuroendocrine cells, and their neoplasms. Hum Pathol 17: 979-983Google Scholar
  63. Gould VE, Wiedenmann B, Lee I, Schwechheimer K, Dockhorn-Dworniczak B, Radosevich JA, Moll R, Franke WW (1987) Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol 126: 243–257PubMedGoogle Scholar
  64. Grant JW, Gallagher PJ (1986) Pleomorphic xanthoastrocytoma. An immunohistochemical reappraisal. Am J Surg Pathol 10: 336-341Google Scholar
  65. Gross N, Beck D, Carrel S, Munoz M (1986) Highly selective recognition of human neuroblastomaGoogle Scholar
  66. cells by mouse monoclonal antibody to a cytoplasmic antigen. Cancer Res 46:2988-2994Google Scholar
  67. Gullotta F, Schindler F, Schmutzler R, Weeks-Seifert A (1985) GFAP in brain tumor diagnosis: Possibilities and limitations. Pathol Res Pract 180: 54-60Google Scholar
  68. Haan EA, Boss BP, Cowan WM (1982) Production and characterization of monoclonal antibodies against “brain specific” proteins 14.3.2. and S-100. Proc Natl Acad Sci USA 79: 7585–7589PubMedCrossRefGoogle Scholar
  69. Haglid K, Carlsson C-A, Stavrou D (1973) An immunological study of human brain tumors concerning the brain specific proteins S-100 and 14.3.2. Acta Neuropathol (Berl) 24: 187–196CrossRefGoogle Scholar
  70. Haglid K, Hamberger A, Hansson H-A, Persson L, Rônnbâch L (1976) Cellular and subcellular distribution of the S-100 protein in rabbit and rat central nervous system. J Neurosci Res 2: 175–192PubMedCrossRefGoogle Scholar
  71. Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K (1985) Immunohistochemical localization of gamma enolase in normal human tissues other than neurons and neuroendocrine tissues. Lab Invest 52 (3): 257–263PubMedGoogle Scholar
  72. Halliday WC, Yeger H, Duwe GF, Phillips MJ (1985) Intermediate filaments in meningiomas. J Neuropathol Exp Neurol 44: 617–623PubMedCrossRefGoogle Scholar
  73. Hart MN, Earle KM (1973) Primitive neuroectodermal tumors of the brain in children. Cancer 32: 890–897PubMedCrossRefGoogle Scholar
  74. Hartman BK, Agrawal HC, Agrawal D, Kalmbach S (1982) Development and maturation of central nervous system myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proc Natl Acad Sci USA 79: 4217-4220Google Scholar
  75. Herpers MJHM, Budka H (1984) Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors: Gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendrog-lioma. Acta Neuropathol (Berl) 64: 265-272Google Scholar
  76. Herpers MJHM, Budka H (1985) Primitive neuroectodermal tumors including the medulloblastoma: Glial differentiation signaled by immunoreactivity for GFAP is restricted to the pure desmoplastic medulloblastoma (“arachnoidal sarcoma of the cerebellum”)- Clin Neuropathol 4: 12–18PubMedGoogle Scholar
  77. Herpers MJHM, Budka H, McCormick D (1984) Production of glial fibrillary acidic protein (GFAP) by neoplastic cells: Adaptation to the microenvironment. Acta Neuropathol (Berl) 64: 333-338Google Scholar
  78. Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membrane organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94: 129–142PubMedCrossRefGoogle Scholar
  79. Hirokawa N, Glicksman MA, Willard MB (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 98: 1523–1536PubMedCrossRefGoogle Scholar
  80. Hofler H, Walter GF, Denk H (1984) Immunohistochemistry of folliculo-stellate cells in normal human adenohypophysis and in pituitary adenomas. Acta Neuropathol (Berl) 65: 35–40CrossRefGoogle Scholar
  81. Hoshino T, Wilson CB (1979) Cell kinetic analyses of human malignant brain tumors (gliomas). Cancer 44: 956–962PubMedCrossRefGoogle Scholar
  82. Hullin DA, Brown K, Kynoch PAM, Smith C, Thompson RJ (1980) Purification, radioimmunoassay, and distribution of human brain 14.3.2. protein (nervous-system specific enolase) in human tissues. Biochim Biophys Acta 628: 98PubMedGoogle Scholar
  83. Hwang TL, Borit A (1982) Rosenthal fibers in glioblastoma multiforme. Acta Neuropathol (Berl) 57: 230–232CrossRefGoogle Scholar
  84. Ironside JW, Royds JA, Taylor CB, Timperley WR (1985) Paraganglioma of the cauda equina: A histological, ultrastructural and immunocytochemical study of two cases with a review of the literature. J Pathol 145: 195-201Google Scholar
  85. Isobe T, Ishioka N, Masupa T, Takahashi Y, Ganno S, Okuyama T (1983) A rapid separation of S-100 subunits by high performance liquid chromatography: The subunit composition of S-100 proteins. Biochem Int 6: 419–426PubMedGoogle Scholar
  86. Isobe T, Ichimori K, Nakajima T, Okuyama T (1984) The a subunit of S-100 protein is present in tumor cells of human malignant melanoma, but not in schwannoma. Brain Res 294: 381–384PubMedCrossRefGoogle Scholar
  87. Jacque CM, Kujas M, Poreau A, Raoul M, Collier P, Racadot J, Baumann N (1979) GFA and S-100 protein levels as an index for malignancy in human gliomas and neurinomas. J Natl Cancer Inst 62: 479–483PubMedGoogle Scholar
  88. Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 82: 4137–4141PubMedCrossRefGoogle Scholar
  89. Janzer RC, Friede RL (1981) Do Rosenthal fibers contain glial fibrillary acid protein? Acta Neuropathol (Berl) 55: 75–76CrossRefGoogle Scholar
  90. Jensen, Marshak DR, Anderson C, Lukas TJ, Watterson DM (1985) Characterization of human brain S-100 fraction: Amino acid sequence of S-100 ß. J Neurochem 45: 700–705PubMedCrossRefGoogle Scholar
  91. Jessen KR, Mirsky R (1980) Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286: 736–737PubMedCrossRefGoogle Scholar
  92. Jessen KR, Mirsky R (1985) Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol 8: 377-393Google Scholar
  93. Jessen KR, Thorpe R, Mirsky R (1984) Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: An immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia, and astrocytes. J Neurocytol 13: 187-200Google Scholar
  94. Kahn HJ, Marks A, Thom H, Baumal R (1982) Role of antibody to S-100 protein in diagnostic pathology. Am J Clin Pathol 79: 341–347Google Scholar
  95. Kartenbeck J, Schwechheimer K, Moll R, Franke WW (1984) Attachment of vimentin filaments to desmosomal plaques in human meningiomal cells and arachnoidal tissue. J Cell Biol 98: 1072–1081PubMedCrossRefGoogle Scholar
  96. Kato K, Ishiguro Y, Suzuki F, Ito A, Semba R (1982) Distribution of nervous system-specific forms of enolase in peripheral tissues. Brain Res 237: 441PubMedCrossRefGoogle Scholar
  97. Kepes JJ (1986) The histopathology of meningiomas. A reflection of origins and expected behavior? J Neuropathol Exp Neurol 45: 95–107PubMedCrossRefGoogle Scholar
  98. Kepes JJ, Rubinstein LJ, Eng LF (1979) Pleomorphic xanthoastrocytoma: A distinctive meningocere- bral glioma of young subjects with relatively favorable prognosis. A study of 12 cases. Cancer 44: 1839–1852PubMedCrossRefGoogle Scholar
  99. Kepes JJ, Rubinstein LJ, Chiang H (1984) The role of astrocytes in the formation of cartilage in gliomas. An immunohistochemical study of four cases. Am J Pathol 117: 471-483Google Scholar
  100. Kim SU, McMorris FA, Sprinkle FJ (1984a) Immunofluorescence demonstration of 2′.3′-cyclic nucleotide 3,-phosphodiesterase in cultured oligodendrocytes of mouse, rat, calf and human. Brain Res 300: 195–199PubMedCrossRefGoogle Scholar
  101. Kim SU, Moretto G, Ruff B, Shin DH (1984b) Culture and cryopreservation of adult human oligodendrocytes and astrocytes. Acta Neuropathol (Berl) 64: 172–175CrossRefGoogle Scholar
  102. Kimura T, Budka H, Soler-Federspiel S (1986) An immunocytochemical comparison of the glia- associated proteins glial fibrillary acidic protein (GFAP) and S-100 protein in human brain tumors. Clin Neuropathol 5: 21–27PubMedGoogle Scholar
  103. Kishiwaka M, Tsuda N, Fujii H, Nishimori I, Yokoyama H, Kihara M (1986) Glioblastoma with sarcomatous component associated with myxoid change. A histochemical, immunohistochemical and electron microscopic study. Acta Neuropathol (Berl) 70: 44-52Google Scholar
  104. Kligman D, Marshak DR (1985) Purification and characterization of a neurite extension factor from bovine brain. Proc Natl Acad Sei USA 82: 7136–7139CrossRefGoogle Scholar
  105. Knaus P, Betz H, Rehm H (1986) Expression of synaptophysin during postnatal development of the mouse brain. J Neurochem 47: 1302–1304PubMedCrossRefGoogle Scholar
  106. Kochi X, Tani E, Morimura T, Itagaki T (1983) Immunohistochemical study of fibronectin in human glioma and meningioma. Acta Neuropathol (Berl) 59: 119–126CrossRefGoogle Scholar
  107. Korf H-W, Klein DC, Zigler JS, Gery I, Schachenmayr W (1986) S-Antigen-like immunoreactivity in a human pineocytoma. Acta Neuropathol (Berl) 69: 165–167CrossRefGoogle Scholar
  108. Krajewski S, Schwendemann G, Weizsäcker M, Wechsler W, de Tribolet N (1986) Binding specificity of two monoclonal antiglioma antibodies: Immunocytochemical studies using a new tissue embedding technique. Acta Neuropathol (Berl) 69: 124-131Google Scholar
  109. Kruse J, Keilhauer G, Faissner A, Timpl R, Schachner M (1985) The JI glycoprotein — a novel nervous system cell adhesion molecule of the L2/HNK-I family. Nature 316: 146–148PubMedCrossRefGoogle Scholar
  110. Kumanishi T, Washiyama K, Watabe K, Sekiguchi K (1985) Glial fibrillary acidic protein in medul-loblastomas. Acta Neuropathol (Berl) 67: 1–5CrossRefGoogle Scholar
  111. Kumar S, Marsden HB (1986) Glial fibrillary acidic protein (GFAP) in human brain tumors. In: Staal EJ, van Weelen CWM (eds) Markers of human neuroectodermal tumors, chap 3. CRC Press, Boca Raton, Florida, pp 25–51Google Scholar
  112. Kumpulainen T, Korhonen LK (1982) Immunohistochemical localization of carbonic anhydrase isoenzyme C in the central and peripheral nervous system of the mouse. J Histochem Cytochem 30: 283–292PubMedCrossRefGoogle Scholar
  113. Kumpulainen T, Dahl D, Korhonen LK, Nyström SHM (1983) Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. J Histochem Cytochem 31: 879–886PubMedCrossRefGoogle Scholar
  114. Kuo W-N, Blake T, Cheema IR, Dominguez J, Nicholson J, Puente K, Shells P, Lowery J (1986) Regulatory effects of S-100 protein and parvalbumin on protein kinases and phosphoprotein phosphatases from brain and skeletal muscle. Mol Cell Biochem 71: 19–24PubMedCrossRefGoogle Scholar
  115. Landolt AM, Shibata T, Kleihues P (1987) Growth rate of human pituitary adenomas. J Neurosurg (to the published )Google Scholar
  116. Lewis SA, Cowan NJ (1985) Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure. J Neurochem 45: 913–919PubMedCrossRefGoogle Scholar
  117. Liao SK, Clarke BJ, Kwong PC (1981) Common neuroectodermal antigens on human melanoma, neuroblastoma, retinoblastoma, glioblastoma, and fetal brain revealed by hybridoma antibodies raised against melanoma cells. Eur J Immunol 11: 450–454PubMedCrossRefGoogle Scholar
  118. Liberman TA, Bartal AD, Yarden Y, Schlessinger J, Soreq H (1984) Expression of EGF-receptors in human brain tumors. Cancer Res 44: 753–760Google Scholar
  119. Liem RKH, Chin SSM, Moraru E, Wang E ( 1985 a) Monoclonal antibodies to epitopes on different regions of the 200,000 dalton neurofilament protein. Probes for the geometry of the filament. Exp Cell Res 156: 419-428Google Scholar
  120. Liem RKH, Pachter JS, Napolitano EW, Chin SSM, Moraru E, Heimann R (1985b) Associated proteins as possible cross-linkers in the neuronal cytoskeleton. Ann NY Acad Sei 455: 492–509CrossRefGoogle Scholar
  121. Liesi P, Kirkwood T, Vaheri A (1986) Fibronectin is expressed by astrocytes cultured from embryonic and early postnatal rat brain. Exp Cell Res 163: 175–185PubMedCrossRefGoogle Scholar
  122. Loeffel SC, Gillespie Gy, Mirmiran SA, Miller EW, Golden P, Askin FB, Siegal GB (1985) Cellular immunolocalization of S-100 protein within fixed tissue sections by monoclonal antibodies. Arch Pathol Lab Med 109: 117–122PubMedGoogle Scholar
  123. Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFAP proteins in the adult rat brain: An immunohistochemical study using horseradish peroxidase labelled antibodies. J Comp Neurol 165: 197-208Google Scholar
  124. Mannoji H, Takeshita I, Fukui M, Ohta M, Kitamura K (1981) Glial fibrillary acidic protein in medulloblastoma. Acta Neuropathol (Berl) 55: 63–69CrossRefGoogle Scholar
  125. Marangos PJ, Zomzely-Neurath C, Luk DCM, York C (1975) Isolation and characterization of the nervous system protein 14.3.2. from rat brain: Purification, subunit composition, and comparison to the beef brain protein. J Biol Chem 250: 1884—1891Google Scholar
  126. Marangos PJ, Parma AM, Goodwin FK (1978) Functional properties of neuronal and glial isoenzymes of brain enolase. J Neurochem 31: 727PubMedCrossRefGoogle Scholar
  127. Marangos PJ, Schmechel D, Parma AM, Clark RL, Goodwin FK (1979) Measurement of neuronal and non-neuronal enolase of rat, monkey and human tissues. J Neurochem 33: 319PubMedCrossRefGoogle Scholar
  128. Masuzawa T, Sato F (1983) The enzyme histochemistry of the choroid plexus. Brain 106: 55–99PubMedCrossRefGoogle Scholar
  129. McComb RD, Bigner DD (1985) Immunolocalization of laminin in neoplasms of the central and peripheral nervous systems. J Neuropathol Exp Neurol 44: 242–253PubMedCrossRefGoogle Scholar
  130. McComb RD, Burger PC (1983) Choroid plexus carcinoma. Report of a case with immunohistochemical and ultrastructural observations. Cancer 51: 470-475Google Scholar
  131. McComb RD, Jones TR, Pizzo SV, Bigner DD (1986) Localization of factor VHI/von Willebrand factor and glial fibrillary acidic protein in the hemangioblastoma: Implications for stromal cell histogenesis. Acta Neuropathol 56: 207-213Google Scholar
  132. McKeever PE, Fligiel SEG, Varani J, Hudson JL, Smith D, Castle R, McCoy JP (1986) Products of cells cultured from gliomas. IV. Extracellular matrix proteins of gliomas. Int J Cancer 37: 867-874Google Scholar
  133. McLendon RE, Burger PC, Pegram CN, Eng LF, Bigner DD (1986) The immunohistochemical application of three anti-GFAP monoclonal antibodies to formalin-fixed, paraffin-embedded, normal and neoplastic brain tissue. J Neuropathol Exp Neurol 45: 692–703PubMedCrossRefGoogle Scholar
  134. Memoly VA, Brown EF, Gould VE (1984) Glial fibrillary acidic protein ( GFAP) immunoreactivity in peripheral nerve sheath tumors. Ultrastruct Pathol 7: 269-275Google Scholar
  135. Mepham BL, Frater W, Mitchell BS (1979) The use of proteolytic enzymes to improve immunoglobulin staining by the P.A.P. technique. Histochem J 11: 345 — 357PubMedCrossRefGoogle Scholar
  136. Michetti F, DeRenzis G, Donato R, Miani N (1976) Brain specific effect of the S-100 protein on the RNA-polymerase activity in isolated nuclei. Brain Res 105: 372–375PubMedCrossRefGoogle Scholar
  137. Miettinen M, Clark R, Virtanen I (1986) Intermediate filament proteins in choroid plexus and ependyma and their tumors. Am J Pathol 123: 231–240PubMedGoogle Scholar
  138. Moll R, Cowin P, Kapprell H-P, Franke WW (1986) Biology of disease Desmosomal proteins: New markers for identification and classification of tumors. Lab Invest 54: 4-25Google Scholar
  139. Molnar ML, Stefansson K, Molnar GK, Tripathi RC, Marton LS (1985) Species variations in distribution of S-100 in retina. Demonstration with a monoclonal antibody and a polyclonal antiserum. Invest Ophthalmol Vis Sci 26: 283-288Google Scholar
  140. Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19: 739–744PubMedCrossRefGoogle Scholar
  141. Moore BW (1975) Brain-specific proteins: S-100 protein, 14.3.2. protein, and glial fibrillary protein. Adv Neurochem 1: 137–155Google Scholar
  142. Motoi Y, Yoshino T, Hayashi K, Nose S, Horie Y, Ogawa K (1985) Immunohistochemical studies on human brain tumors using anti-Leu 7 monoclonal antibody in paraffin-embedded specimens. Acta Neuropathol (Berl) 66: 75–77CrossRefGoogle Scholar
  143. Mukai M, Torikata C, Iri H, Morikawa Y, Shimizu K, Shimoda T, Nukina N, Ihara Y, Kageyama K (1986) Expression of neurofilament triplet proteins in human neural tumors. An immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma, and neuroblastoma. Am J Pathol 122: 28-35Google Scholar
  144. Nakagawa Y, Perentes E, Rubinstein LJ (1986) Immunohistochemical characterization of oligoden-drogliomas: An analysis of multiple markers. Acta Neuropathol (Berl) 72: 15-22Google Scholar
  145. Nakajima T, Kameya T, Tsumuraya M, Shimosato Y, Isobe T, Ishioka N, Okuyama T (1983) Immunohistochemical demonstration of neuron-specific enolase in normal and neoplastic tissues. Biomed Res 4 (5): 495–504Google Scholar
  146. Nakajima T, Kameya T, Tsumuraya M, Shimosato Y, Kato K (1984) Enolase distribution in human brain tumors, retinoblastomas and pituitary adenomas. Brain Res 308: 215–222PubMedCrossRefGoogle Scholar
  147. Nakamura Y, Becker LE (1983) Subependymal giant-cell tumor: Astrocytic or neuronal? Acta Neu- ropathol (Berl) 60: 271–277CrossRefGoogle Scholar
  148. Nakamura Y, Becker LE, Marks A (1983) Distribution of immunoreactive S-100 in pediatric brain tumors. J Neuropathol Exp Neurol 42: 136–145PubMedCrossRefGoogle Scholar
  149. Nakazato Y, Ishizeki J, Takahashi K, Yamaguchi H, Kamei T, Mori T (1982) Localization of S-100 protein and glial fibrillary acidic protein-related antigen in pleomorphic adenoma of the salivary gland. Lab Invest 46: 621–626PubMedGoogle Scholar
  150. Nesland JM, Holm R, Johannessen JV, Gould VE (1986) Neurone specific enolase immunostaining in the diagnosis of breast carcinomas with neuroendocrine differentiation. Its usefulness and limitations. J Pathol 148: 35-43Google Scholar
  151. Odelstal L, Phalman S, Nilsson K, Larsson E, Lackgreu G, Johansson K-E, Hjerten S, Grotte G (1981) Neuron-specific enolase in relation to differentiation in human neuroblastoma. Brain Res 224: 69–82CrossRefGoogle Scholar
  152. Osborn M, Weber K (1983) Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology. Lab Invest 48: 372-394Google Scholar
  153. Osborn M, Dirk T, Käser H, Weber K, Altmannsberger M (1986) Immunohistochemical localization of neurofilaments and neuron-specific enolase in 29 cases of neuroblastoma. Am J Pathol 122: 433–442PubMedGoogle Scholar
  154. Paetau A, Mellström K, Vaheri A, Haltia M (1980) Distribution of a major connective tissue protein, fibronectin, in normal and neoplastic human nervous tissue. Acta Neuropathol (Berl) 51: 47–51CrossRefGoogle Scholar
  155. Pâhlman S, Esscher T, Nilsson K (1986) Expression of gamma-subunit of enolase, neuron-specific enolase, in human non-neuroendocrine tumors and derived cell lines. Lab Invest 54: 554–560PubMedGoogle Scholar
  156. Palmer JQ, Kasselberg AG, Netsky MG (1981) Differentiation of medulloblastoma — Studies including immunohistochemical localization of glial fibrillary acidic protein. J Neurosurg 55: 161–169PubMedCrossRefGoogle Scholar
  157. Pasquier B, Lachard A, Pasquier D, Couderc P, Delpech B, Courel MN (1983) Protéine gliofibrillaire acide (GFA) et tumeurs nerveuses centrales. Etude immunohistochimique d’une série de 107 cas. Ann Pathol 3: 203–211PubMedGoogle Scholar
  158. Pearce JM, Edwards YH, Harris H (1976) Human enolase isozymes: Electrophoretic and biochemical evidence for three loci. Ann Hum Genet 39: 263-276Google Scholar
  159. Perentes E, Rubinstein LJ (1985) Immunohistochemical recognition of human nerve sheath tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 68: 319–324CrossRefGoogle Scholar
  160. Perentes E, Rubinstein LJ (1986) Immunohistochemical recognition of human neuroepithelial tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 69: 227–233CrossRefGoogle Scholar
  161. Perentes E, Rubinstein LJ, Herman MM, Donoso LA (1986) S-Antigen immunoreactivity in human pineal glands and pineal parenchymal tumors. A monoclonal antibody study. Acta Neuropathol (Berl) 71: 224-227Google Scholar
  162. Pilkington GJ, Lantos PL (1982) The role of glutamine synthetase in the diagnosis of cerebral tumors. Neuropathol Appl Neurobiol 8: 227–236PubMedCrossRefGoogle Scholar
  163. Pinkus GS, Kurtin PJ (1985) Epithelial membrane antigen — A diagnostic discriminant in surgical pathology: Immunohistochemical profile in epithelial, mesenchymal, and hematopoietic neoplasms using paraffin sections and monoclonal antibodies. Hum Pathol 16: 929-940Google Scholar
  164. Pixley SK, DeVellis J (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev Brain Res 15: 201–209CrossRefGoogle Scholar
  165. Pruss R, Mirsky R, Raff MC, Thorpe R, Dowding AJ, Anderton BH (1981) All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell 27: 419–428PubMedCrossRefGoogle Scholar
  166. Raff M, Mirsky R, Fields K, Lisak R, Dortman S, Silberberg DH, Gregson N, Leibowitz S, Kennedy M (1978) Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274: 813–816PubMedGoogle Scholar
  167. Raff MC, Fields K, Hakomori SI, Mirsky R, Pruss RM, Winter J (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174: 283–308PubMedCrossRefGoogle Scholar
  168. Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303: 390–396PubMedCrossRefGoogle Scholar
  169. Ramaekers FCS, Puts JJG, Moesker O, Kant A, Huysmans A, Haag D, Jap PHK, Herman CJ, Vooijs GP (1983) Antibodies to intermediate filament proteins in the immunohistochemical identi-fication of human tumors: An overview. Histochem J 15: 691-713Google Scholar
  170. Rehm H, Wiedenmann B, Betz H (1986) Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5: 535–541PubMedGoogle Scholar
  171. Roessmann U, Velasco ME, Sindley SD, Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunoperoxidase study. Brain Res 200: 13-21Google Scholar
  172. Roessmann U, Velasco ME, Gambetti P, Autilio-Gambetti L (1983) Neuronal and astrocytic differen-tiation in human neuroepithelial neoplasm. An immunohistochemical study. J Neuropathol Exp Neurol 42: 113-121Google Scholar
  173. Rorke LB (1983) The cerebral medulloblastoma and its relationship to primitive neuroectodermal tumors. J Neuropathol Exp Neurol 42: 1–15PubMedCrossRefGoogle Scholar
  174. Roussel G, Delaunoy JP, Nussbaum JL, Mandel P (1979) Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method. Brain Res 160: 47–55PubMedCrossRefGoogle Scholar
  175. Royds JA, Parsons MA, Taylor CB, Timperley WR (1982) Enolase isoenzyme distribution in the human brain and its tumors. J Pathol 137: 37–49PubMedCrossRefGoogle Scholar
  176. Rubinstein LJ (1975) The cerebellar medulloblastoma. Its origin, differentiation, morphological variants, and biological behavior. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 18. North-Holland, Amsterdam, pp 167–193Google Scholar
  177. Rubinstein LJ, Brucher JM (1981) Focal ependymal differentiation in choroid plexus papillomas. An immunoperoxidase study. Acta Neuropathol (Berl) 53: 29-33Google Scholar
  178. Rueger DC, Huston JS, Dahl D, Bignami A (1979) Formation of 100 Ä filaments from purified glial fibrillary acidic protein in vitro. J Mol Biol 135: 53–68PubMedCrossRefGoogle Scholar
  179. Salisbury JR, Isaacson PG (1985) Synovial sarcoma: An immunohistochemical study. J Pathol 147: 49-57Google Scholar
  180. Schachner M, Hedley-Whyte ET, Hsu DW, Schoonmaker G, Bignami A (1977) Ultrastructural characterization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labelling. J Cell Biol 75: 67–73PubMedCrossRefGoogle Scholar
  181. Schiffer D, Giordana MT, Mauro A, Migheli A (1984) GFAP, F VIII/RAg, laminin and fibronectin in gliosarcomas: An immunohistological study. Acta Neuropathol (Berl) 63: 108-116Google Scholar
  182. Schiffer D, Giordana MT, Mauro A, Migheli A, Germano I, Giaccone G (1986) Immunohistochemical demonstration of vimentin in human cerebral tumors. Acta Neuropathol (Berl) 70: 209–219CrossRefGoogle Scholar
  183. Schindler E, Gullotta F (1983) Glial fibrillary acidic protein in medulloblastomas and other embryonic CNS tumors of children. Virchows Arch (Pathol Anat) 398: 263–275CrossRefGoogle Scholar
  184. Schlegel R, Banks-Schlegel S, McLeod JA, Pinkus GS (1980) Immunoperoxidase localization of keratin in human neoplasms. A preliminary survey. Am J Pathol 101: 41-50Google Scholar
  185. Schmechel DE (1985) Gamma-subunit of the glycolytic enzyme enolase: Non-specific or neuronspecific. Lab Invest 52: 239–242PubMedGoogle Scholar
  186. Schmechel DE, Marangos PJ, Brightman MW (1976) Neuron-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature (Lond) 276: 834CrossRefGoogle Scholar
  187. Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK (1978) Brain enolases as specific markers of neuronal and glial cells. Science 199: 313PubMedCrossRefGoogle Scholar
  188. Schmechel DE, Brightman MW, Marangos PJ (1980) Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res 190: 195PubMedCrossRefGoogle Scholar
  189. Schmitt HP (1983a) Rapid anaplastic transformation in gliomas of adulthood. “Selection” in neuro-oncogenesis. Pathol Res Pract 176: 313–323PubMedGoogle Scholar
  190. Schmitt HP (1983 b) Rapid anaplastic transformation of gliomas in childhood. Neuropediatrics 14:137-143PubMedCrossRefGoogle Scholar
  191. Schnegg JF, Diserens AC, Carell S, Accolla RS, deTribolet N (1981) Human glioma-associated antigens detected by monoclonal antibodies. Cancer Res 41: 1209–1213PubMedGoogle Scholar
  192. Schuller-Petrovic S, Gebhart W, Lassmann H, Rumpoldt H, Kraft D (1983) A shared antigenic determinant between natural killer cells and nervous tissue. Nature 306: 179–181PubMedCrossRefGoogle Scholar
  193. Schwechheimer K (1986) Nervale Tumormarker. Verh Dtsch Ges Pathol 70: 82–103PubMedGoogle Scholar
  194. Schwechheimer K, Kartenbeck J, Moll R, Franke WW (1984) The vimentin filament-desmosome cytoskeleton of diverse types of human meningiomas: A distinctive diagnostic feature. Lab Invest 51: 584-591Google Scholar
  195. Schwechheimer K, Wiedenmann B, Franke WW (1987) Synaptophysin: A reliable marker for medul- loblastomas. Virchows Arch 411: 53-59Google Scholar
  196. Sensenbrenner M, Devilliers G, Bock E, Porte A (1980) Biochemical and ultrastructural studies of cultured rat astroglial cells. Effect of brain extract and dibutyryl cyclic AMP on glial fibrillary acidic protein and glial filaments. Differentiation 17: 51-61Google Scholar
  197. Shaw G, Weber K (1982) Differential expression of neurofilament triplet proteins in brain development. Nature 298: 277–279PubMedCrossRefGoogle Scholar
  198. Shaw G, Osborn M, Weber K (1981) An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol 26: 68–82PubMedGoogle Scholar
  199. Shaw GE, Debus E, Weber K (1984) The immunological relatedness of neurofilament proteins of higher vertebrales. Eur J Cell Biol 34: 130–138PubMedGoogle Scholar
  200. Shimada H, Aoyama C, Chiba T, Newton WA (1985) Prognostic subgroups for undifferentiated neuroblastoma: Immunohistochemical study with anti-S-100 protein antibody. Hum Pathol 16: 471–476PubMedCrossRefGoogle Scholar
  201. Slowik F, Jellinger K, Gaszo L, Fischer J (1985) Gliosarcomas: Histological, immunohistological, ultrastructural and tissue culture studies. Acta Neuropathol (Berl) 67: 201-210Google Scholar
  202. Smith DA, Lantos PL (1985) Immunocytochemistry of cerebellar astrocytomas: With special note on Rosenthal fibers. Acta Neuropathol (Berl) 66: 155-159Google Scholar
  203. Spaar FW, Ahyai A, Spaar U, Gazso L, Zimmermann A (1986) Flow-cytophotometry of nuclear DNA in biopsies of 45 human gliomas and after primary culture in vitro. Clin Neuropathol 5: 157–175PubMedGoogle Scholar
  204. Stefansson K, Wollmann R (1980) Distribution of glial fibrillary acidic protein in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 52: 135–140CrossRefGoogle Scholar
  205. Stefansson K, Wollmann R (1981) Distribution of the neuronal specific protein, 14-3-2, in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 53: 113–117CrossRefGoogle Scholar
  206. Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and non- phosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80: 6126–6130PubMedCrossRefGoogle Scholar
  207. Suzuki F, Umeda Y, Kato K (1980) Rat brain enolase isozymes: Purification of three forms of enolase. J Biochem 87: 1587-1594Google Scholar
  208. Takahashi K, Isobe T, Ohtsuki Y, Akagi T, Sonobe H, Okuyama T (1984) Immunohistochemical study on the distribution of a and ß subunits of S-100 protein in human neoplasm and normal tissues. Virchows Arch (Cell Pathol) 45: 385–396CrossRefGoogle Scholar
  209. Tapia FJ, Polak JM, Barbosa AJA, Bloom SR, Marangos PJ, Dermody C, Pearse AGE (1981) Neuron-specific enolase is produced by neuroendocrine tumors. Lancet 808-811Google Scholar
  210. Taratuto AL, Molina H, Monges J (1983) Choroid plexus tumors in infancy and childhood. Focal ependymal differentiation. An immunoperoxidase study. Acta Neuropathol (Berl) 59: 304-308Google Scholar
  211. Tascos NA, Parr J, Gonatas NK (1982) Immunocytochemical study of the glial fibrillary acidic protein in human neoplasms of the central nervous system. Hum Pathol 13: 454 — 458PubMedCrossRefGoogle Scholar
  212. Taylor CB, Royds J A, Timperley WR (1986) Alpha and gamma enolase in the assessment of tumors of neuroectodermal origin. In: Staal EJ, van Veelen CWM (eds) Markers of human neuroectodermal tumors, chapter 9. CRC Press, Boca Raton, Florida, pp 119–154Google Scholar
  213. Theaker JM, Gatter KC, Esiri MM, Fleming KA (1986) Epithelial membrane antigen and cytokeratin expression by meningeomas: An immunohistological study. J Clin Pathol 39: 435-439Google Scholar
  214. Trapp BD, Itoyama Y, Macintosh TD, Quarles RH (1983) P2 protein in oligodendrocytes and myelin of the rabbit central nervous system. J Neurochem 40: 47–54PubMedCrossRefGoogle Scholar
  215. Traub P (1985) Intermediate filaments. A review. Springer, Berlin Heidelberg New York Tokyo, pp 1–256Google Scholar
  216. Trojanowski JQ, Lee V, Pillsbury N, Lee S (1982) Neuronal origin of human esthesioneuroblastoma demonstrated with anti-neurofilament monoclonal antibodies. N Engl J Med 307: 159–161PubMedCrossRefGoogle Scholar
  217. Trojanowski JQ, Lee VM-J, Schlaepfer WW (1984) An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Hum Pathol 15: 248–257PubMedCrossRefGoogle Scholar
  218. van Eldick LJ, Jensen RA, Ehrenfried BA, Whetsell WO Jr (1986) Immunohistochemical localization of S-100 ß in human nervous system tumors by using monoclonal antibodies with specificity for the S-100 p polypeptide. J Histochem Cytochem 34: 977–982CrossRefGoogle Scholar
  219. Vanstapel MJ, Peeters B, Cordell J, Heyns W, DeWolf-Peeters C, Despet V, Mason D (1985) Production of monoclonal antibodies directed against antigenic determinants common to the a- and ß-chain of bovine brain S-100 protein. Lab Invest 52: 232–238PubMedGoogle Scholar
  220. Velasco ME, Dahl D, Roessmann U, Gambetti P (1980) Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms. Cancer 45: 484–494PubMedCrossRefGoogle Scholar
  221. Velasco ME, Roessmann U, Gambetti P (1982) The presence of glial fibrillary acidic protein in the human pituitary gland. J Neuropathol Exp Neurol 41: 150–163PubMedCrossRefGoogle Scholar
  222. Velasco ME, Ghobrial MW, Ross ER (1985) Neuron-specific enolase and neurofilament proteinGoogle Scholar
  223. as markers of differentiation in medulloblastoma. Surg Neurol 23:177-182Google Scholar
  224. Vinores SA, Rubinstein LJ (1985) Simultaneous expression of GFAP and NSE by the same reactive or neoplastic astrocytes. Neuropathol Appl Neurobiol 11: 349–359PubMedCrossRefGoogle Scholar
  225. Vinores SA, Bonnin JM, Rubinstein LJ, Marangos PJ (1984) Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 108: 536–540PubMedGoogle Scholar
  226. Wai-Kwan AY, Luna M, Borit A (1985) Vimentin and glial fibrillary acidic protein in human brain tumors. J Neurooncol 3: 35–38Google Scholar
  227. Wang E, Cairncross JG, Liem RKH (1984) Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells. Proc Natl Acad Sci USA 81: 2102–2106PubMedCrossRefGoogle Scholar
  228. Weber K, Shaw G, Osborn M, Debus E, Geisler N (1983) Neurofilaments, a subclass of intermediate filaments: Structure and expression. Cold Spring Harbor Symp Quant Biol 47: 717-729Google Scholar
  229. Weidenheim KM, Campbell WG Jr (1986) Perineurial cell tumor. Immunocytochemical and ultra- structural characterization. Relationship to other peripheral nerve tumors with a review of the literature. Virchows Arch (Pathol Anat) 408: 375-383Google Scholar
  230. Weiss SW, Langloss JM, Enzinger FM (1983) The value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Invest 49: 299–308PubMedGoogle Scholar
  231. Weller RO, Steart PV, Moore IE (1986) Carbonic anhydrase C as a marker antigen in the diagnosis of choroid plexus papillomas and other tumors: An immunoperoxidase study. In: Walker MD, Thomas DGT (eds) Biology of brain tumors, chapter 16. Nijhoff, Boston, pp 115–120CrossRefGoogle Scholar
  232. Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41: 1017–1028PubMedCrossRefGoogle Scholar
  233. Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: A marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83: 3500-3504Google Scholar
  234. Wikstrand CJ, Bourdon MA, Pegram CN, Bigner DD (1982) Human fetal brain antigen expression common to tumors of neuroectodermal origin: Gliomas, neuroblastomas, and melanomas. J Neuroimmunol 3: 43-62Google Scholar
  235. Wikstrand CJ, Grahmann FC, McComb RD, Bigner DD (1985) Antigenic heterogeneity of human anaplastic gliomas and glioma-derived cell lines defined by monoclonal antibodies. J Neuropathol Exp Neurol 44: 229–241PubMedCrossRefGoogle Scholar
  236. Yamaguchi Y (1980) Studies on immunohistochemical localization of S-100 and GFA proteins in the rat nervous system and in human brain tumors. Brain Nerve 32: 1055–1064PubMedGoogle Scholar
  237. Yoshii Y, Maki Y, Tsuboi K, Tomono Y, Nakagawa K, Hoshino T (1986) Estimation of growth fraction with bromodeoxyuridine in human central nervous system tumors. J Neurosurg 65: 659–663PubMedCrossRefGoogle Scholar
  238. Yung WKA, Borit A, Dahl D, Wang E (1984) Keratin and vimentin in meningiomas. J Neuropathol Exp Neurol 43: 299CrossRefGoogle Scholar
  239. Yung WKA, Luna M, Borit A (1985) Vimentin and glial fibrillary acidic protein in human brainGoogle Scholar
  240. tumors. J Neurooncol 3:35-38Google Scholar
  241. Zheng J, Ivarsson B, Collins VP (1986) Monoclonal antibodies to GFAP epitopes available in formaldehyde fixed tissue. Acta Pathol Microbiol Immunol Scand Sect A 94: 353–361Google Scholar
  242. Zuber P, Hamou M-F, de Tribolet N (1987) Identification of proliferating cells in human gliomas using the monoclonal antibody Ki-67. Neurosurgery (to be published)Google Scholar
  243. Zülch KJ (1979) Histologic Classification of Tumors of the Central Nervous System. International Histological Classification of Tumors, No 21. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • P. Kleihues
  • M. Kiessling
  • R. C. Janzer

There are no affiliations available

Personalised recommendations