Skip to main content

Morphological Markers in Neuro-Oncology

  • Chapter
Book cover Morphological Tumor Markers

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 77))

Abstract

Like many other morphological disciplines, surgical neuropathology has been greatly advanced by the introduction of immunohistochemical methods. The assessment of antigenic marker proteins in nervous system tumors has generally led to a higher level of diagnostic accuracy. Although the spectrum of available antibodies with proven diagnostic usefulness is still limited, some previously difficult differential diagnoses have become less troublesome and ambiguous (BONNIN and RUBINSTEIN 1984). This is particularly true for the distinction of gliomas and embryonal CNS tumors from metastatic lesions of epithelial and mesenchymal origin, as well as from malignant lymphomas. In addition, immunocytochemistry has expanded our knowledge of the origin of some human brain tumors with a re-evaluation of several entities, the histogenesis and classification of which had been disputed for decades (ZÜLCH 1979) due to the lack of reliable histomorphological criteria. Thus, the identification of abundant glial fibrillary acidic protein (GFAP) in most giant cells of the ‘monstrocellular sarcoma’ has led to its re-classification as giant cell glioblastoma with a sarcoma-tous component, i.e., a variant of the glioblastoma. The presence of numerous GFAP positive cells in superficially located cerebral neoplasms of young adults previously classified as malignant mesenchymal tumors, has allowed the identification of a new and now widely acknowledged tumor type, the pleomorphic xanthoastrocytoma (KEPES et al. 1979; GRANT and GALLAGHER 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo T, Balch TA (1981) Differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol 127: 1024–1029

    PubMed  CAS  Google Scholar 

  • Achtstatter T, Moll R, Anderson A, Schwechheimer K, Kuhn C, Franke WW (1986) Cell type specificity of the expression of glial filament protein as demonstrated by monoclonal antibody. Differentiation 31: 206–227

    Article  Google Scholar 

  • Allan PM, Garson JA, Harper EI, Asser U, Coakham HB, Brownell B, Kemshead JT (1983) Biological characterization and clinical applications of a monoclonal antibody recognizing an antigen restricted to neuroectodermal tissues. Int J Cancer 31: 591–598

    Article  PubMed  CAS  Google Scholar 

  • Altmannsberger M, Osbora M, Schaver A, Weber K (1981) Antibodies to different intermediate filament proteins. Cell type-specific markers on paraffin-embedded human tissues. Lab Invest 45: 427-434

    Google Scholar 

  • Artlieb U, Krepler R, Wiche G (1985) Expression of microtubule-associated proteins, map-1 and map-2, in human neuroblastomas and differential diagnosis of immature neuroblasts. Lab Invest 53: 684–691

    PubMed  CAS  Google Scholar 

  • Baudier J, Briving C, Deinum J, Haglid K, Soerskog L, Wallin M (1982) Effect of S-100 proteins and calmodulin on Ca-induced disassembly of brain microtubule proteins in vitro. FEBS Lett 147: 165–167

    Article  PubMed  CAS  Google Scholar 

  • Bellon G, Cavlet T, Cam Y, Pluot M, Poulin G, Pytlinska M, Bernard MH (1985) Immunohistochemi- cal localization of macromolecules in the basement membrane and extracellular matrix of human gliomas and meningeomas. Acta Neuropathol (Berl) 66: 245–252

    Article  CAS  Google Scholar 

  • Bigbee JW, Kosek JC, Eng LF (1977) Effects of primary antiserum dilution on staining of “antigen-rich” tissues with the peroxidase-antiperoxidase technique. J Histochem Cytochem 25: 443–447

    Article  PubMed  CAS  Google Scholar 

  • Bignami A, Dahl D (1976) The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein ( GFA) in mammalian and submammalian vertebrates. Neuropathol Appl Neurobiol 2: 99-111

    Google Scholar 

  • Bignami A, Dahl D (1979) The radial glia of Müller in the rat retina and their response protein. Exp Eye Res 28: 63–69

    Article  PubMed  CAS  Google Scholar 

  • Bock E, Dissing J (1975) Determination of enolase activity connected to the brain-specific-protein 14.3.2. Scand J Immunol 4: 31–36

    Article  Google Scholar 

  • Bonnin JM, Rubinstein LJ (1984) Immunohistochemistry of central nervous system tumors. Its contributions to neurosurgical diagnosis. J Neurosurg 60: 1121-1133

    Google Scholar 

  • Bonnin JM, Rubinstein LJ, Papasozomenos SCh, Marangos PJ (1984) Subependymal giant cell astrocytoma. Significance and possible cytogenetic implications of an immunohistochemical study. Acta Neuropathol (Berl) 62: 185-193

    Google Scholar 

  • Budka H (1986) Non-glial specificities of immunocytochemistry for the glial fibrillary acidic protein (GFAP). Acta Neuropathol 72: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Bullard DE, Bigner DD (1985) Applications of monoclonal antibodies in the diagnosis and treatment of primary brain tumors. J Neurosurg 63: 2–16

    Article  PubMed  CAS  Google Scholar 

  • Burger PC, Vollmer RT (1980) Histologic factors of prognostic significance in the glioblastoma multiforme. Cancer 46: 1175–1186

    Article  Google Scholar 

  • Burger PC, Shibata T, Kleihues P (1986) The use of the monoclonal antibody Ki-67 in the identification of proliferating cells: Application to surgical neuropathology. Am J Surg Pathol 10: 611-617

    Google Scholar 

  • Burger PC, Grahmann FC, Bliestle A, Kleihues P (1987) Differentiation in the medulloblastoma. A histological and immunohistochemical study. Acta Neuropathol (Berl) 73: 115-123

    Google Scholar 

  • Calissano P, Bangham AD (1971) Effect of two brain specific proteins (S-100 and 14.3.2) on cation diffusion across artificial membranes. Biochem Biophys Res Commun 43: 504–509

    Article  PubMed  CAS  Google Scholar 

  • Chen S-H, Giblet ER (1976) Enolase: Human tissue distribution and evidence for three different loci. Ann Hum Genet 39: 277-280

    Google Scholar 

  • Chiu FC, Norton WT, Fields KL (1981) The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein and the fibroblast-type filament protein vimentin. J Neurochem 37: 147–155

    Article  PubMed  CAS  Google Scholar 

  • Choi BH (1986) Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: A light and electron microscopic immunoperoxidase study. J Neuropathol Exp Neurol 45: 408–418

    Article  PubMed  CAS  Google Scholar 

  • Choi HSH, Anderson PJ (1985) Immunohistochemical diagnosis of olfactory neuroblastoma. J Neuropathol Exp Neurol 44: 18–31

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Kim RC (1984) Expression of glial fibrillary acidic protein in immature Oligodendroglia. Science 223: 407–409

    Article  PubMed  CAS  Google Scholar 

  • Churg A (1985) Immunohistochemical staining for vimentin and keratin in malignant mesothelioma. Am J Surg Pathol 9: 360–365

    Article  PubMed  CAS  Google Scholar 

  • Clark HB, Minesky JJ, Agrawal D, Pluot M (1985) Myelin basic protein and P2 protein are not immunohistochemical markers for Schwann cell neoplasms. A comparative study using antisera to S-100, P2 and myelin basic protein. Am J Pathol 121: 96-101

    Google Scholar 

  • Coffin CM, Mukai K, Dehner LP (1983) Glial differentiation in medulloblastomas. Histogenetic insight, glial reaction, or invasion of brain? Am J Surg Pathol 7: 555–565

    Article  PubMed  CAS  Google Scholar 

  • Coffin CM, Wick MR, Braun JT, Dehner LP (1986) Choroid plexus neoplasms. Clinicopathologic and immunohistochemical studies. Am J Surg Pathol 10: 394-404

    Google Scholar 

  • Collins VP (1984) Monoclonal antibodies to glial fibrillary acidic protein in the cytologic diagnosis of brain tumors. Acta Cytol 28: 401–406

    PubMed  CAS  Google Scholar 

  • Cosgrave JW, Heikkila JG, Marks A, Brown IR (1983) Synthesis of S-100 protein on free and membrane-bound polysomes of the rabbit brain. J Neurochem 40: 806–813

    Article  Google Scholar 

  • Dahl D (1981) The vimentin-GFAP protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neurosci Res 6: 741–748

    Article  PubMed  CAS  Google Scholar 

  • Daimaru Y, Hashimoto H, Enjoji M (1985) Malignant peripheral nerve-sheath tumors (malignant schwannomas). An immunohistochemical study of 29 cases. Am J Surg Pathol 9: 434–444

    Article  PubMed  CAS  Google Scholar 

  • DeArmond SJ, Fajardo M, Naughton SA, Eng LF (1983) Degradation of glial fibrillary acidic protein by a calcium dependent proteinase: an electroblot study. Brain Res 262: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Deck JHN, Rubinstein LJ (1981) Glial fibrillary acidic protein in stromal cells of some capillary hemangioblastomas: Significance and possible implications of an immunoperoxidase study. Acta Neuropathol (Berl) 54: 173-181

    Google Scholar 

  • Deck JHN, Eng Lf, Bigbee J, Woodcock SM (1978) The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol (Berl) 42: 183–190

    Article  CAS  Google Scholar 

  • Dhillon AP, Rode J (1982) Patterns of staining for neuron-specific enolase in benign and malignant melanocytic lesions of the skin. Diagn Histopathol 5: 169–174

    PubMed  CAS  Google Scholar 

  • Dixon RG, Eng LF (1981) Glial fibrillary acidic protein in the retina of the developing albino rat: An immunoperoxidase study of paraffin-embedded tissue. J Comp Neurol 195: 305-321

    Google Scholar 

  • Donato R (1986) S-100 proteins. Cell Calcium 7: 123–145

    Article  CAS  Google Scholar 

  • Donoso LA, Folberg R, Arbizo V (1985) Retinal S-antigen and retinoblastoma: A monoclonal antibody histopathologic study. Arch Ophthalmol 103: 855-857

    Google Scholar 

  • Drake PF, Lasek RJ (1984) Regional differences in the neuronal cytoskeleton. J Neurosci 5: 1173–1186

    Google Scholar 

  • Duffy PE, Graf L, Huang Y-Y, Rapport MM (1979) Glial fibrillary acidic protein in ependymomas and other brain tumors. J Neurol Sei 40: 133–146

    Article  CAS  Google Scholar 

  • Duffy PE, Huang Y-Y, Rapport MM, Graf L (1980) Glial fibrillary acidic protein in giant cell tumors of brain and other gliomas: A possible relationship to malignancy, differentiation, and pleomorphism of glia. Acta Neuropathol (Berl) 52: 51-57

    Google Scholar 

  • Eng LF (1980) The glial fibrillary acidic (GFA) proteins of the nervous system. In: Bradshaw RA, Schneider DM (eds) Proteins of the Nervous System. 2nd Edition. Raven Press, New York, pp 85–117

    Google Scholar 

  • Eng LF (1985) Glial fibrillary acidic protein (GFAP): The major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Eng LJ, Vanderhaeghen J J, Bignami A, Gerstl B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Fan K (1982) S-100 protein synthesis in cultured glioma cells is Gx-phase of cell cycle-dependent. Brain Res 237: 498–503

    Article  PubMed  CAS  Google Scholar 

  • Friedman HS, Burger PC, Bigner SH, Trojanowski JQ, Halperin EC, Bigner DD (1985) Establishment and characterization of the human medulloblastoma tumor cell line D283 MED. J Neuropathol Exp Neurol 44: 592–605

    Article  PubMed  CAS  Google Scholar 

  • Gambetti P, Autilio-Gambetti L, Papasozomenos SC (1981) Bodian’s silver method stains neurofilament polypeptides. Science 213: 1521–1522

    Article  PubMed  CAS  Google Scholar 

  • Gard AL, White FP, Dutton GR (1985) Extra-neural glial fibrillary acidic protein ( GFAP) immunore- activity in perisinusoidal stellate cells of rat liver. J Neuroimmunol 8: 359-375

    Google Scholar 

  • Garson JA, Coakham HB, Kemshead JT, Brownell B, Harper EI, Allan P, Bourne S (1985) The role of monoclonal antibodies in brain tumor diagnosis and cerebrospinal fluid ( CSF) cytology. J Neuro-Oncol 3: 165-171

    Google Scholar 

  • Gerdes J (1985) An immunohistological method for estimating cell growth fractions in rapid histo-pathological diagnosis during surgery. Int J Cancer 35: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Gerdes J, Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer 31: 13–20

    Article  PubMed  CAS  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker H-H, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710–1715

    PubMed  CAS  Google Scholar 

  • Gheuens J, de Schutter E, Noppe M, Lowenthal A (1984) Identification of several forms of the glial fibrillary acidic protein, or alpha-albumin, by a specific monoclonal antibody. J Neurochem 43: 964–970

    PubMed  CAS  Google Scholar 

  • Ghobrial M, Ross ER (1986) Immunocytochemistry of neuron-specific enolase: A réévaluation. In: Zimmerman HM (eds) Progress in Neuropathology, Vol. 6. Raven Press, New York, pp 199–221

    Google Scholar 

  • Giangaspero F, Doglioni C, Rivano MT, Pileri S, Gerdes J, Stein H (1987 a) Growth fraction in human brain tumors defined by the monoclonal antibody Ki-67. Acta Neuropathol (Berl) 74:179–182

    Google Scholar 

  • Giangaspero F, Kleihues P, Yasargil MG (1987 b) Metastasis of a choroid plexus papilloma 15 years after surgical resection and radiotherapy. J Neurosurg (submitted for publication)

    Google Scholar 

  • Giordana MT, Mauro A, Migheli A, Schiffer D (1983) Contributions of immunohistochemistry to the problem of differentiation in medulloblastoma. Ital J Neurol Sci 4: 411–415

    Article  PubMed  CAS  Google Scholar 

  • Giordana MT, Germano I, Giaccone G, Mauro A, Migheli A, Schiffer D (1985) The distribution of laminin in human brain tumors: An immunohistochemical study. Acta Neuropathol (Berl) 67: 51-57

    Google Scholar 

  • Goldstein ME, Sternberger LA, Sternberger NH (1983) Microheterogeneity (“neurotypy”) of neu-rofilament proteins. Proc Natl Acad Sci USA 80: 3101–3105

    Article  PubMed  CAS  Google Scholar 

  • Gould VE (1985) The coexpression of distinct classes of intermediate filaments in human neoplasms. Arch Pathol Lab Med 109: 984–985

    PubMed  CAS  Google Scholar 

  • Gould VE, Lee I, Wiedenmann B, Moll R, Chejfec G, Franke WW (1986) Synaptophysin: A novel marker for neurons, certain neuroendocrine cells, and their neoplasms. Hum Pathol 17: 979-983

    Google Scholar 

  • Gould VE, Wiedenmann B, Lee I, Schwechheimer K, Dockhorn-Dworniczak B, Radosevich JA, Moll R, Franke WW (1987) Synaptophysin expression in neuroendocrine neoplasms as determined by immunocytochemistry. Am J Pathol 126: 243–257

    PubMed  CAS  Google Scholar 

  • Grant JW, Gallagher PJ (1986) Pleomorphic xanthoastrocytoma. An immunohistochemical reappraisal. Am J Surg Pathol 10: 336-341

    Google Scholar 

  • Gross N, Beck D, Carrel S, Munoz M (1986) Highly selective recognition of human neuroblastoma

    Google Scholar 

  • cells by mouse monoclonal antibody to a cytoplasmic antigen. Cancer Res 46:2988-2994

    Google Scholar 

  • Gullotta F, Schindler F, Schmutzler R, Weeks-Seifert A (1985) GFAP in brain tumor diagnosis: Possibilities and limitations. Pathol Res Pract 180: 54-60

    Google Scholar 

  • Haan EA, Boss BP, Cowan WM (1982) Production and characterization of monoclonal antibodies against “brain specific” proteins 14.3.2. and S-100. Proc Natl Acad Sci USA 79: 7585–7589

    Article  PubMed  CAS  Google Scholar 

  • Haglid K, Carlsson C-A, Stavrou D (1973) An immunological study of human brain tumors concerning the brain specific proteins S-100 and 14.3.2. Acta Neuropathol (Berl) 24: 187–196

    Article  CAS  Google Scholar 

  • Haglid K, Hamberger A, Hansson H-A, Persson L, Rônnbâch L (1976) Cellular and subcellular distribution of the S-100 protein in rabbit and rat central nervous system. J Neurosci Res 2: 175–192

    Article  PubMed  CAS  Google Scholar 

  • Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K (1985) Immunohistochemical localization of gamma enolase in normal human tissues other than neurons and neuroendocrine tissues. Lab Invest 52 (3): 257–263

    PubMed  CAS  Google Scholar 

  • Halliday WC, Yeger H, Duwe GF, Phillips MJ (1985) Intermediate filaments in meningiomas. J Neuropathol Exp Neurol 44: 617–623

    Article  PubMed  CAS  Google Scholar 

  • Hart MN, Earle KM (1973) Primitive neuroectodermal tumors of the brain in children. Cancer 32: 890–897

    Article  PubMed  CAS  Google Scholar 

  • Hartman BK, Agrawal HC, Agrawal D, Kalmbach S (1982) Development and maturation of central nervous system myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proc Natl Acad Sci USA 79: 4217-4220

    Google Scholar 

  • Herpers MJHM, Budka H (1984) Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors: Gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendrog-lioma. Acta Neuropathol (Berl) 64: 265-272

    Google Scholar 

  • Herpers MJHM, Budka H (1985) Primitive neuroectodermal tumors including the medulloblastoma: Glial differentiation signaled by immunoreactivity for GFAP is restricted to the pure desmoplastic medulloblastoma (“arachnoidal sarcoma of the cerebellum”)- Clin Neuropathol 4: 12–18

    PubMed  CAS  Google Scholar 

  • Herpers MJHM, Budka H, McCormick D (1984) Production of glial fibrillary acidic protein (GFAP) by neoplastic cells: Adaptation to the microenvironment. Acta Neuropathol (Berl) 64: 333-338

    Google Scholar 

  • Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membrane organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94: 129–142

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Glicksman MA, Willard MB (1984) Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J Cell Biol 98: 1523–1536

    Article  PubMed  CAS  Google Scholar 

  • Hofler H, Walter GF, Denk H (1984) Immunohistochemistry of folliculo-stellate cells in normal human adenohypophysis and in pituitary adenomas. Acta Neuropathol (Berl) 65: 35–40

    Article  CAS  Google Scholar 

  • Hoshino T, Wilson CB (1979) Cell kinetic analyses of human malignant brain tumors (gliomas). Cancer 44: 956–962

    Article  PubMed  CAS  Google Scholar 

  • Hullin DA, Brown K, Kynoch PAM, Smith C, Thompson RJ (1980) Purification, radioimmunoassay, and distribution of human brain 14.3.2. protein (nervous-system specific enolase) in human tissues. Biochim Biophys Acta 628: 98

    PubMed  CAS  Google Scholar 

  • Hwang TL, Borit A (1982) Rosenthal fibers in glioblastoma multiforme. Acta Neuropathol (Berl) 57: 230–232

    Article  CAS  Google Scholar 

  • Ironside JW, Royds JA, Taylor CB, Timperley WR (1985) Paraganglioma of the cauda equina: A histological, ultrastructural and immunocytochemical study of two cases with a review of the literature. J Pathol 145: 195-201

    Google Scholar 

  • Isobe T, Ishioka N, Masupa T, Takahashi Y, Ganno S, Okuyama T (1983) A rapid separation of S-100 subunits by high performance liquid chromatography: The subunit composition of S-100 proteins. Biochem Int 6: 419–426

    PubMed  CAS  Google Scholar 

  • Isobe T, Ichimori K, Nakajima T, Okuyama T (1984) The a subunit of S-100 protein is present in tumor cells of human malignant melanoma, but not in schwannoma. Brain Res 294: 381–384

    Article  PubMed  CAS  Google Scholar 

  • Jacque CM, Kujas M, Poreau A, Raoul M, Collier P, Racadot J, Baumann N (1979) GFA and S-100 protein levels as an index for malignancy in human gliomas and neurinomas. J Natl Cancer Inst 62: 479–483

    PubMed  CAS  Google Scholar 

  • Jahn R, Schiebler W, Ouimet C, Greengard P (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 82: 4137–4141

    Article  PubMed  CAS  Google Scholar 

  • Janzer RC, Friede RL (1981) Do Rosenthal fibers contain glial fibrillary acid protein? Acta Neuropathol (Berl) 55: 75–76

    Article  CAS  Google Scholar 

  • Jensen, Marshak DR, Anderson C, Lukas TJ, Watterson DM (1985) Characterization of human brain S-100 fraction: Amino acid sequence of S-100 ß. J Neurochem 45: 700–705

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (1980) Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature 286: 736–737

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (1985) Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol 8: 377-393

    Google Scholar 

  • Jessen KR, Thorpe R, Mirsky R (1984) Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: An immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia, and astrocytes. J Neurocytol 13: 187-200

    Google Scholar 

  • Kahn HJ, Marks A, Thom H, Baumal R (1982) Role of antibody to S-100 protein in diagnostic pathology. Am J Clin Pathol 79: 341–347

    Google Scholar 

  • Kartenbeck J, Schwechheimer K, Moll R, Franke WW (1984) Attachment of vimentin filaments to desmosomal plaques in human meningiomal cells and arachnoidal tissue. J Cell Biol 98: 1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Ishiguro Y, Suzuki F, Ito A, Semba R (1982) Distribution of nervous system-specific forms of enolase in peripheral tissues. Brain Res 237: 441

    Article  PubMed  CAS  Google Scholar 

  • Kepes JJ (1986) The histopathology of meningiomas. A reflection of origins and expected behavior? J Neuropathol Exp Neurol 45: 95–107

    Article  PubMed  CAS  Google Scholar 

  • Kepes JJ, Rubinstein LJ, Eng LF (1979) Pleomorphic xanthoastrocytoma: A distinctive meningocere- bral glioma of young subjects with relatively favorable prognosis. A study of 12 cases. Cancer 44: 1839–1852

    Article  PubMed  CAS  Google Scholar 

  • Kepes JJ, Rubinstein LJ, Chiang H (1984) The role of astrocytes in the formation of cartilage in gliomas. An immunohistochemical study of four cases. Am J Pathol 117: 471-483

    Google Scholar 

  • Kim SU, McMorris FA, Sprinkle FJ (1984a) Immunofluorescence demonstration of 2′.3′-cyclic nucleotide 3,-phosphodiesterase in cultured oligodendrocytes of mouse, rat, calf and human. Brain Res 300: 195–199

    Article  PubMed  CAS  Google Scholar 

  • Kim SU, Moretto G, Ruff B, Shin DH (1984b) Culture and cryopreservation of adult human oligodendrocytes and astrocytes. Acta Neuropathol (Berl) 64: 172–175

    Article  CAS  Google Scholar 

  • Kimura T, Budka H, Soler-Federspiel S (1986) An immunocytochemical comparison of the glia- associated proteins glial fibrillary acidic protein (GFAP) and S-100 protein in human brain tumors. Clin Neuropathol 5: 21–27

    PubMed  CAS  Google Scholar 

  • Kishiwaka M, Tsuda N, Fujii H, Nishimori I, Yokoyama H, Kihara M (1986) Glioblastoma with sarcomatous component associated with myxoid change. A histochemical, immunohistochemical and electron microscopic study. Acta Neuropathol (Berl) 70: 44-52

    Google Scholar 

  • Kligman D, Marshak DR (1985) Purification and characterization of a neurite extension factor from bovine brain. Proc Natl Acad Sei USA 82: 7136–7139

    Article  CAS  Google Scholar 

  • Knaus P, Betz H, Rehm H (1986) Expression of synaptophysin during postnatal development of the mouse brain. J Neurochem 47: 1302–1304

    Article  PubMed  CAS  Google Scholar 

  • Kochi X, Tani E, Morimura T, Itagaki T (1983) Immunohistochemical study of fibronectin in human glioma and meningioma. Acta Neuropathol (Berl) 59: 119–126

    Article  CAS  Google Scholar 

  • Korf H-W, Klein DC, Zigler JS, Gery I, Schachenmayr W (1986) S-Antigen-like immunoreactivity in a human pineocytoma. Acta Neuropathol (Berl) 69: 165–167

    Article  CAS  Google Scholar 

  • Krajewski S, Schwendemann G, Weizsäcker M, Wechsler W, de Tribolet N (1986) Binding specificity of two monoclonal antiglioma antibodies: Immunocytochemical studies using a new tissue embedding technique. Acta Neuropathol (Berl) 69: 124-131

    Google Scholar 

  • Kruse J, Keilhauer G, Faissner A, Timpl R, Schachner M (1985) The JI glycoprotein — a novel nervous system cell adhesion molecule of the L2/HNK-I family. Nature 316: 146–148

    Article  PubMed  CAS  Google Scholar 

  • Kumanishi T, Washiyama K, Watabe K, Sekiguchi K (1985) Glial fibrillary acidic protein in medul-loblastomas. Acta Neuropathol (Berl) 67: 1–5

    Article  CAS  Google Scholar 

  • Kumar S, Marsden HB (1986) Glial fibrillary acidic protein (GFAP) in human brain tumors. In: Staal EJ, van Weelen CWM (eds) Markers of human neuroectodermal tumors, chap 3. CRC Press, Boca Raton, Florida, pp 25–51

    Google Scholar 

  • Kumpulainen T, Korhonen LK (1982) Immunohistochemical localization of carbonic anhydrase isoenzyme C in the central and peripheral nervous system of the mouse. J Histochem Cytochem 30: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Kumpulainen T, Dahl D, Korhonen LK, Nyström SHM (1983) Immunolabeling of carbonic anhydrase isoenzyme C and glial fibrillary acidic protein in paraffin-embedded tissue sections of human brain and retina. J Histochem Cytochem 31: 879–886

    Article  PubMed  CAS  Google Scholar 

  • Kuo W-N, Blake T, Cheema IR, Dominguez J, Nicholson J, Puente K, Shells P, Lowery J (1986) Regulatory effects of S-100 protein and parvalbumin on protein kinases and phosphoprotein phosphatases from brain and skeletal muscle. Mol Cell Biochem 71: 19–24

    Article  PubMed  CAS  Google Scholar 

  • Landolt AM, Shibata T, Kleihues P (1987) Growth rate of human pituitary adenomas. J Neurosurg (to the published )

    Google Scholar 

  • Lewis SA, Cowan NJ (1985) Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure. J Neurochem 45: 913–919

    Article  PubMed  CAS  Google Scholar 

  • Liao SK, Clarke BJ, Kwong PC (1981) Common neuroectodermal antigens on human melanoma, neuroblastoma, retinoblastoma, glioblastoma, and fetal brain revealed by hybridoma antibodies raised against melanoma cells. Eur J Immunol 11: 450–454

    Article  PubMed  CAS  Google Scholar 

  • Liberman TA, Bartal AD, Yarden Y, Schlessinger J, Soreq H (1984) Expression of EGF-receptors in human brain tumors. Cancer Res 44: 753–760

    Google Scholar 

  • Liem RKH, Chin SSM, Moraru E, Wang E ( 1985 a) Monoclonal antibodies to epitopes on different regions of the 200,000 dalton neurofilament protein. Probes for the geometry of the filament. Exp Cell Res 156: 419-428

    Google Scholar 

  • Liem RKH, Pachter JS, Napolitano EW, Chin SSM, Moraru E, Heimann R (1985b) Associated proteins as possible cross-linkers in the neuronal cytoskeleton. Ann NY Acad Sei 455: 492–509

    Article  CAS  Google Scholar 

  • Liesi P, Kirkwood T, Vaheri A (1986) Fibronectin is expressed by astrocytes cultured from embryonic and early postnatal rat brain. Exp Cell Res 163: 175–185

    Article  PubMed  CAS  Google Scholar 

  • Loeffel SC, Gillespie Gy, Mirmiran SA, Miller EW, Golden P, Askin FB, Siegal GB (1985) Cellular immunolocalization of S-100 protein within fixed tissue sections by monoclonal antibodies. Arch Pathol Lab Med 109: 117–122

    PubMed  CAS  Google Scholar 

  • Ludwin SK, Kosek JC, Eng LF (1976) The topographical distribution of S-100 and GFAP proteins in the adult rat brain: An immunohistochemical study using horseradish peroxidase labelled antibodies. J Comp Neurol 165: 197-208

    Google Scholar 

  • Mannoji H, Takeshita I, Fukui M, Ohta M, Kitamura K (1981) Glial fibrillary acidic protein in medulloblastoma. Acta Neuropathol (Berl) 55: 63–69

    Article  CAS  Google Scholar 

  • Marangos PJ, Zomzely-Neurath C, Luk DCM, York C (1975) Isolation and characterization of the nervous system protein 14.3.2. from rat brain: Purification, subunit composition, and comparison to the beef brain protein. J Biol Chem 250: 1884—1891

    Google Scholar 

  • Marangos PJ, Parma AM, Goodwin FK (1978) Functional properties of neuronal and glial isoenzymes of brain enolase. J Neurochem 31: 727

    Article  PubMed  CAS  Google Scholar 

  • Marangos PJ, Schmechel D, Parma AM, Clark RL, Goodwin FK (1979) Measurement of neuronal and non-neuronal enolase of rat, monkey and human tissues. J Neurochem 33: 319

    Article  PubMed  CAS  Google Scholar 

  • Masuzawa T, Sato F (1983) The enzyme histochemistry of the choroid plexus. Brain 106: 55–99

    Article  PubMed  Google Scholar 

  • McComb RD, Bigner DD (1985) Immunolocalization of laminin in neoplasms of the central and peripheral nervous systems. J Neuropathol Exp Neurol 44: 242–253

    Article  PubMed  CAS  Google Scholar 

  • McComb RD, Burger PC (1983) Choroid plexus carcinoma. Report of a case with immunohistochemical and ultrastructural observations. Cancer 51: 470-475

    Google Scholar 

  • McComb RD, Jones TR, Pizzo SV, Bigner DD (1986) Localization of factor VHI/von Willebrand factor and glial fibrillary acidic protein in the hemangioblastoma: Implications for stromal cell histogenesis. Acta Neuropathol 56: 207-213

    Google Scholar 

  • McKeever PE, Fligiel SEG, Varani J, Hudson JL, Smith D, Castle R, McCoy JP (1986) Products of cells cultured from gliomas. IV. Extracellular matrix proteins of gliomas. Int J Cancer 37: 867-874

    Google Scholar 

  • McLendon RE, Burger PC, Pegram CN, Eng LF, Bigner DD (1986) The immunohistochemical application of three anti-GFAP monoclonal antibodies to formalin-fixed, paraffin-embedded, normal and neoplastic brain tissue. J Neuropathol Exp Neurol 45: 692–703

    Article  PubMed  CAS  Google Scholar 

  • Memoly VA, Brown EF, Gould VE (1984) Glial fibrillary acidic protein ( GFAP) immunoreactivity in peripheral nerve sheath tumors. Ultrastruct Pathol 7: 269-275

    Google Scholar 

  • Mepham BL, Frater W, Mitchell BS (1979) The use of proteolytic enzymes to improve immunoglobulin staining by the P.A.P. technique. Histochem J 11: 345 — 357

    Article  PubMed  CAS  Google Scholar 

  • Michetti F, DeRenzis G, Donato R, Miani N (1976) Brain specific effect of the S-100 protein on the RNA-polymerase activity in isolated nuclei. Brain Res 105: 372–375

    Article  PubMed  CAS  Google Scholar 

  • Miettinen M, Clark R, Virtanen I (1986) Intermediate filament proteins in choroid plexus and ependyma and their tumors. Am J Pathol 123: 231–240

    PubMed  CAS  Google Scholar 

  • Moll R, Cowin P, Kapprell H-P, Franke WW (1986) Biology of disease Desmosomal proteins: New markers for identification and classification of tumors. Lab Invest 54: 4-25

    Google Scholar 

  • Molnar ML, Stefansson K, Molnar GK, Tripathi RC, Marton LS (1985) Species variations in distribution of S-100 in retina. Demonstration with a monoclonal antibody and a polyclonal antiserum. Invest Ophthalmol Vis Sci 26: 283-288

    Google Scholar 

  • Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19: 739–744

    Article  PubMed  CAS  Google Scholar 

  • Moore BW (1975) Brain-specific proteins: S-100 protein, 14.3.2. protein, and glial fibrillary protein. Adv Neurochem 1: 137–155

    CAS  Google Scholar 

  • Motoi Y, Yoshino T, Hayashi K, Nose S, Horie Y, Ogawa K (1985) Immunohistochemical studies on human brain tumors using anti-Leu 7 monoclonal antibody in paraffin-embedded specimens. Acta Neuropathol (Berl) 66: 75–77

    Article  CAS  Google Scholar 

  • Mukai M, Torikata C, Iri H, Morikawa Y, Shimizu K, Shimoda T, Nukina N, Ihara Y, Kageyama K (1986) Expression of neurofilament triplet proteins in human neural tumors. An immunohistochemical study of paraganglioma, ganglioneuroma, ganglioneuroblastoma, and neuroblastoma. Am J Pathol 122: 28-35

    Google Scholar 

  • Nakagawa Y, Perentes E, Rubinstein LJ (1986) Immunohistochemical characterization of oligoden-drogliomas: An analysis of multiple markers. Acta Neuropathol (Berl) 72: 15-22

    Google Scholar 

  • Nakajima T, Kameya T, Tsumuraya M, Shimosato Y, Isobe T, Ishioka N, Okuyama T (1983) Immunohistochemical demonstration of neuron-specific enolase in normal and neoplastic tissues. Biomed Res 4 (5): 495–504

    CAS  Google Scholar 

  • Nakajima T, Kameya T, Tsumuraya M, Shimosato Y, Kato K (1984) Enolase distribution in human brain tumors, retinoblastomas and pituitary adenomas. Brain Res 308: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Becker LE (1983) Subependymal giant-cell tumor: Astrocytic or neuronal? Acta Neu- ropathol (Berl) 60: 271–277

    Article  CAS  Google Scholar 

  • Nakamura Y, Becker LE, Marks A (1983) Distribution of immunoreactive S-100 in pediatric brain tumors. J Neuropathol Exp Neurol 42: 136–145

    Article  PubMed  CAS  Google Scholar 

  • Nakazato Y, Ishizeki J, Takahashi K, Yamaguchi H, Kamei T, Mori T (1982) Localization of S-100 protein and glial fibrillary acidic protein-related antigen in pleomorphic adenoma of the salivary gland. Lab Invest 46: 621–626

    PubMed  CAS  Google Scholar 

  • Nesland JM, Holm R, Johannessen JV, Gould VE (1986) Neurone specific enolase immunostaining in the diagnosis of breast carcinomas with neuroendocrine differentiation. Its usefulness and limitations. J Pathol 148: 35-43

    Google Scholar 

  • Odelstal L, Phalman S, Nilsson K, Larsson E, Lackgreu G, Johansson K-E, Hjerten S, Grotte G (1981) Neuron-specific enolase in relation to differentiation in human neuroblastoma. Brain Res 224: 69–82

    Article  Google Scholar 

  • Osborn M, Weber K (1983) Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology. Lab Invest 48: 372-394

    Google Scholar 

  • Osborn M, Dirk T, Käser H, Weber K, Altmannsberger M (1986) Immunohistochemical localization of neurofilaments and neuron-specific enolase in 29 cases of neuroblastoma. Am J Pathol 122: 433–442

    PubMed  CAS  Google Scholar 

  • Paetau A, Mellström K, Vaheri A, Haltia M (1980) Distribution of a major connective tissue protein, fibronectin, in normal and neoplastic human nervous tissue. Acta Neuropathol (Berl) 51: 47–51

    Article  CAS  Google Scholar 

  • Pâhlman S, Esscher T, Nilsson K (1986) Expression of gamma-subunit of enolase, neuron-specific enolase, in human non-neuroendocrine tumors and derived cell lines. Lab Invest 54: 554–560

    PubMed  Google Scholar 

  • Palmer JQ, Kasselberg AG, Netsky MG (1981) Differentiation of medulloblastoma — Studies including immunohistochemical localization of glial fibrillary acidic protein. J Neurosurg 55: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Pasquier B, Lachard A, Pasquier D, Couderc P, Delpech B, Courel MN (1983) Protéine gliofibrillaire acide (GFA) et tumeurs nerveuses centrales. Etude immunohistochimique d’une série de 107 cas. Ann Pathol 3: 203–211

    PubMed  CAS  Google Scholar 

  • Pearce JM, Edwards YH, Harris H (1976) Human enolase isozymes: Electrophoretic and biochemical evidence for three loci. Ann Hum Genet 39: 263-276

    Google Scholar 

  • Perentes E, Rubinstein LJ (1985) Immunohistochemical recognition of human nerve sheath tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 68: 319–324

    Article  CAS  Google Scholar 

  • Perentes E, Rubinstein LJ (1986) Immunohistochemical recognition of human neuroepithelial tumors by anti-Leu 7 (HNK-1) monoclonal antibody. Acta Neuropathol (Berl) 69: 227–233

    Article  CAS  Google Scholar 

  • Perentes E, Rubinstein LJ, Herman MM, Donoso LA (1986) S-Antigen immunoreactivity in human pineal glands and pineal parenchymal tumors. A monoclonal antibody study. Acta Neuropathol (Berl) 71: 224-227

    Google Scholar 

  • Pilkington GJ, Lantos PL (1982) The role of glutamine synthetase in the diagnosis of cerebral tumors. Neuropathol Appl Neurobiol 8: 227–236

    Article  PubMed  CAS  Google Scholar 

  • Pinkus GS, Kurtin PJ (1985) Epithelial membrane antigen — A diagnostic discriminant in surgical pathology: Immunohistochemical profile in epithelial, mesenchymal, and hematopoietic neoplasms using paraffin sections and monoclonal antibodies. Hum Pathol 16: 929-940

    Google Scholar 

  • Pixley SK, DeVellis J (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Dev Brain Res 15: 201–209

    Article  Google Scholar 

  • Pruss R, Mirsky R, Raff MC, Thorpe R, Dowding AJ, Anderton BH (1981) All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell 27: 419–428

    Article  PubMed  CAS  Google Scholar 

  • Raff M, Mirsky R, Fields K, Lisak R, Dortman S, Silberberg DH, Gregson N, Leibowitz S, Kennedy M (1978) Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature 274: 813–816

    PubMed  CAS  Google Scholar 

  • Raff MC, Fields K, Hakomori SI, Mirsky R, Pruss RM, Winter J (1979) Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174: 283–308

    Article  PubMed  CAS  Google Scholar 

  • Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303: 390–396

    Article  PubMed  CAS  Google Scholar 

  • Ramaekers FCS, Puts JJG, Moesker O, Kant A, Huysmans A, Haag D, Jap PHK, Herman CJ, Vooijs GP (1983) Antibodies to intermediate filament proteins in the immunohistochemical identi-fication of human tumors: An overview. Histochem J 15: 691-713

    Google Scholar 

  • Rehm H, Wiedenmann B, Betz H (1986) Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5: 535–541

    PubMed  CAS  Google Scholar 

  • Roessmann U, Velasco ME, Sindley SD, Gambetti P (1980) Glial fibrillary acidic protein (GFAP) in ependymal cells during development. An immunoperoxidase study. Brain Res 200: 13-21

    Google Scholar 

  • Roessmann U, Velasco ME, Gambetti P, Autilio-Gambetti L (1983) Neuronal and astrocytic differen-tiation in human neuroepithelial neoplasm. An immunohistochemical study. J Neuropathol Exp Neurol 42: 113-121

    Google Scholar 

  • Rorke LB (1983) The cerebral medulloblastoma and its relationship to primitive neuroectodermal tumors. J Neuropathol Exp Neurol 42: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Roussel G, Delaunoy JP, Nussbaum JL, Mandel P (1979) Demonstration of a specific localization of carbonic anhydrase C in the glial cells of rat CNS by an immunohistochemical method. Brain Res 160: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Royds JA, Parsons MA, Taylor CB, Timperley WR (1982) Enolase isoenzyme distribution in the human brain and its tumors. J Pathol 137: 37–49

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein LJ (1975) The cerebellar medulloblastoma. Its origin, differentiation, morphological variants, and biological behavior. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 18. North-Holland, Amsterdam, pp 167–193

    Google Scholar 

  • Rubinstein LJ, Brucher JM (1981) Focal ependymal differentiation in choroid plexus papillomas. An immunoperoxidase study. Acta Neuropathol (Berl) 53: 29-33

    Google Scholar 

  • Rueger DC, Huston JS, Dahl D, Bignami A (1979) Formation of 100 Ä filaments from purified glial fibrillary acidic protein in vitro. J Mol Biol 135: 53–68

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JR, Isaacson PG (1985) Synovial sarcoma: An immunohistochemical study. J Pathol 147: 49-57

    Google Scholar 

  • Schachner M, Hedley-Whyte ET, Hsu DW, Schoonmaker G, Bignami A (1977) Ultrastructural characterization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labelling. J Cell Biol 75: 67–73

    Article  PubMed  CAS  Google Scholar 

  • Schiffer D, Giordana MT, Mauro A, Migheli A (1984) GFAP, F VIII/RAg, laminin and fibronectin in gliosarcomas: An immunohistological study. Acta Neuropathol (Berl) 63: 108-116

    Google Scholar 

  • Schiffer D, Giordana MT, Mauro A, Migheli A, Germano I, Giaccone G (1986) Immunohistochemical demonstration of vimentin in human cerebral tumors. Acta Neuropathol (Berl) 70: 209–219

    Article  CAS  Google Scholar 

  • Schindler E, Gullotta F (1983) Glial fibrillary acidic protein in medulloblastomas and other embryonic CNS tumors of children. Virchows Arch (Pathol Anat) 398: 263–275

    Article  CAS  Google Scholar 

  • Schlegel R, Banks-Schlegel S, McLeod JA, Pinkus GS (1980) Immunoperoxidase localization of keratin in human neoplasms. A preliminary survey. Am J Pathol 101: 41-50

    Google Scholar 

  • Schmechel DE (1985) Gamma-subunit of the glycolytic enzyme enolase: Non-specific or neuronspecific. Lab Invest 52: 239–242

    PubMed  CAS  Google Scholar 

  • Schmechel DE, Marangos PJ, Brightman MW (1976) Neuron-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature (Lond) 276: 834

    Article  Google Scholar 

  • Schmechel D, Marangos PJ, Zis AP, Brightman M, Goodwin FK (1978) Brain enolases as specific markers of neuronal and glial cells. Science 199: 313

    Article  PubMed  CAS  Google Scholar 

  • Schmechel DE, Brightman MW, Marangos PJ (1980) Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res 190: 195

    Article  PubMed  CAS  Google Scholar 

  • Schmitt HP (1983a) Rapid anaplastic transformation in gliomas of adulthood. “Selection” in neuro-oncogenesis. Pathol Res Pract 176: 313–323

    PubMed  CAS  Google Scholar 

  • Schmitt HP (1983 b) Rapid anaplastic transformation of gliomas in childhood. Neuropediatrics 14:137-143

    Article  PubMed  CAS  Google Scholar 

  • Schnegg JF, Diserens AC, Carell S, Accolla RS, deTribolet N (1981) Human glioma-associated antigens detected by monoclonal antibodies. Cancer Res 41: 1209–1213

    PubMed  CAS  Google Scholar 

  • Schuller-Petrovic S, Gebhart W, Lassmann H, Rumpoldt H, Kraft D (1983) A shared antigenic determinant between natural killer cells and nervous tissue. Nature 306: 179–181

    Article  PubMed  CAS  Google Scholar 

  • Schwechheimer K (1986) Nervale Tumormarker. Verh Dtsch Ges Pathol 70: 82–103

    PubMed  CAS  Google Scholar 

  • Schwechheimer K, Kartenbeck J, Moll R, Franke WW (1984) The vimentin filament-desmosome cytoskeleton of diverse types of human meningiomas: A distinctive diagnostic feature. Lab Invest 51: 584-591

    Google Scholar 

  • Schwechheimer K, Wiedenmann B, Franke WW (1987) Synaptophysin: A reliable marker for medul- loblastomas. Virchows Arch 411: 53-59

    Google Scholar 

  • Sensenbrenner M, Devilliers G, Bock E, Porte A (1980) Biochemical and ultrastructural studies of cultured rat astroglial cells. Effect of brain extract and dibutyryl cyclic AMP on glial fibrillary acidic protein and glial filaments. Differentiation 17: 51-61

    Google Scholar 

  • Shaw G, Weber K (1982) Differential expression of neurofilament triplet proteins in brain development. Nature 298: 277–279

    Article  PubMed  CAS  Google Scholar 

  • Shaw G, Osborn M, Weber K (1981) An immunofluorescence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain. Eur J Cell Biol 26: 68–82

    PubMed  CAS  Google Scholar 

  • Shaw GE, Debus E, Weber K (1984) The immunological relatedness of neurofilament proteins of higher vertebrales. Eur J Cell Biol 34: 130–138

    PubMed  CAS  Google Scholar 

  • Shimada H, Aoyama C, Chiba T, Newton WA (1985) Prognostic subgroups for undifferentiated neuroblastoma: Immunohistochemical study with anti-S-100 protein antibody. Hum Pathol 16: 471–476

    Article  PubMed  CAS  Google Scholar 

  • Slowik F, Jellinger K, Gaszo L, Fischer J (1985) Gliosarcomas: Histological, immunohistological, ultrastructural and tissue culture studies. Acta Neuropathol (Berl) 67: 201-210

    Google Scholar 

  • Smith DA, Lantos PL (1985) Immunocytochemistry of cerebellar astrocytomas: With special note on Rosenthal fibers. Acta Neuropathol (Berl) 66: 155-159

    Google Scholar 

  • Spaar FW, Ahyai A, Spaar U, Gazso L, Zimmermann A (1986) Flow-cytophotometry of nuclear DNA in biopsies of 45 human gliomas and after primary culture in vitro. Clin Neuropathol 5: 157–175

    PubMed  CAS  Google Scholar 

  • Stefansson K, Wollmann R (1980) Distribution of glial fibrillary acidic protein in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 52: 135–140

    Article  CAS  Google Scholar 

  • Stefansson K, Wollmann R (1981) Distribution of the neuronal specific protein, 14-3-2, in central nervous system lesions of tuberous sclerosis. Acta Neuropathol (Berl) 53: 113–117

    Article  CAS  Google Scholar 

  • Sternberger LA, Sternberger NH (1983) Monoclonal antibodies distinguish phosphorylated and non- phosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80: 6126–6130

    Article  PubMed  CAS  Google Scholar 

  • Suzuki F, Umeda Y, Kato K (1980) Rat brain enolase isozymes: Purification of three forms of enolase. J Biochem 87: 1587-1594

    Google Scholar 

  • Takahashi K, Isobe T, Ohtsuki Y, Akagi T, Sonobe H, Okuyama T (1984) Immunohistochemical study on the distribution of a and ß subunits of S-100 protein in human neoplasm and normal tissues. Virchows Arch (Cell Pathol) 45: 385–396

    Article  CAS  Google Scholar 

  • Tapia FJ, Polak JM, Barbosa AJA, Bloom SR, Marangos PJ, Dermody C, Pearse AGE (1981) Neuron-specific enolase is produced by neuroendocrine tumors. Lancet 808-811

    Google Scholar 

  • Taratuto AL, Molina H, Monges J (1983) Choroid plexus tumors in infancy and childhood. Focal ependymal differentiation. An immunoperoxidase study. Acta Neuropathol (Berl) 59: 304-308

    Google Scholar 

  • Tascos NA, Parr J, Gonatas NK (1982) Immunocytochemical study of the glial fibrillary acidic protein in human neoplasms of the central nervous system. Hum Pathol 13: 454 — 458

    Article  PubMed  CAS  Google Scholar 

  • Taylor CB, Royds J A, Timperley WR (1986) Alpha and gamma enolase in the assessment of tumors of neuroectodermal origin. In: Staal EJ, van Veelen CWM (eds) Markers of human neuroectodermal tumors, chapter 9. CRC Press, Boca Raton, Florida, pp 119–154

    Google Scholar 

  • Theaker JM, Gatter KC, Esiri MM, Fleming KA (1986) Epithelial membrane antigen and cytokeratin expression by meningeomas: An immunohistological study. J Clin Pathol 39: 435-439

    Google Scholar 

  • Trapp BD, Itoyama Y, Macintosh TD, Quarles RH (1983) P2 protein in oligodendrocytes and myelin of the rabbit central nervous system. J Neurochem 40: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Traub P (1985) Intermediate filaments. A review. Springer, Berlin Heidelberg New York Tokyo, pp 1–256

    Google Scholar 

  • Trojanowski JQ, Lee V, Pillsbury N, Lee S (1982) Neuronal origin of human esthesioneuroblastoma demonstrated with anti-neurofilament monoclonal antibodies. N Engl J Med 307: 159–161

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VM-J, Schlaepfer WW (1984) An immunohistochemical study of human central and peripheral nervous system tumors, using monoclonal antibodies against neurofilaments and glial filaments. Hum Pathol 15: 248–257

    Article  PubMed  CAS  Google Scholar 

  • van Eldick LJ, Jensen RA, Ehrenfried BA, Whetsell WO Jr (1986) Immunohistochemical localization of S-100 ß in human nervous system tumors by using monoclonal antibodies with specificity for the S-100 p polypeptide. J Histochem Cytochem 34: 977–982

    Article  Google Scholar 

  • Vanstapel MJ, Peeters B, Cordell J, Heyns W, DeWolf-Peeters C, Despet V, Mason D (1985) Production of monoclonal antibodies directed against antigenic determinants common to the a- and ß-chain of bovine brain S-100 protein. Lab Invest 52: 232–238

    PubMed  CAS  Google Scholar 

  • Velasco ME, Dahl D, Roessmann U, Gambetti P (1980) Immunohistochemical localization of glial fibrillary acidic protein in human glial neoplasms. Cancer 45: 484–494

    Article  PubMed  CAS  Google Scholar 

  • Velasco ME, Roessmann U, Gambetti P (1982) The presence of glial fibrillary acidic protein in the human pituitary gland. J Neuropathol Exp Neurol 41: 150–163

    Article  PubMed  CAS  Google Scholar 

  • Velasco ME, Ghobrial MW, Ross ER (1985) Neuron-specific enolase and neurofilament protein

    Google Scholar 

  • as markers of differentiation in medulloblastoma. Surg Neurol 23:177-182

    Google Scholar 

  • Vinores SA, Rubinstein LJ (1985) Simultaneous expression of GFAP and NSE by the same reactive or neoplastic astrocytes. Neuropathol Appl Neurobiol 11: 349–359

    Article  PubMed  CAS  Google Scholar 

  • Vinores SA, Bonnin JM, Rubinstein LJ, Marangos PJ (1984) Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 108: 536–540

    PubMed  CAS  Google Scholar 

  • Wai-Kwan AY, Luna M, Borit A (1985) Vimentin and glial fibrillary acidic protein in human brain tumors. J Neurooncol 3: 35–38

    Google Scholar 

  • Wang E, Cairncross JG, Liem RKH (1984) Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells. Proc Natl Acad Sci USA 81: 2102–2106

    Article  PubMed  CAS  Google Scholar 

  • Weber K, Shaw G, Osborn M, Debus E, Geisler N (1983) Neurofilaments, a subclass of intermediate filaments: Structure and expression. Cold Spring Harbor Symp Quant Biol 47: 717-729

    Google Scholar 

  • Weidenheim KM, Campbell WG Jr (1986) Perineurial cell tumor. Immunocytochemical and ultra- structural characterization. Relationship to other peripheral nerve tumors with a review of the literature. Virchows Arch (Pathol Anat) 408: 375-383

    Google Scholar 

  • Weiss SW, Langloss JM, Enzinger FM (1983) The value of S-100 protein in the diagnosis of soft tissue tumors with particular reference to benign and malignant Schwann cell tumors. Lab Invest 49: 299–308

    PubMed  CAS  Google Scholar 

  • Weller RO, Steart PV, Moore IE (1986) Carbonic anhydrase C as a marker antigen in the diagnosis of choroid plexus papillomas and other tumors: An immunoperoxidase study. In: Walker MD, Thomas DGT (eds) Biology of brain tumors, chapter 16. Nijhoff, Boston, pp 115–120

    Chapter  Google Scholar 

  • Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41: 1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: A marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83: 3500-3504

    Google Scholar 

  • Wikstrand CJ, Bourdon MA, Pegram CN, Bigner DD (1982) Human fetal brain antigen expression common to tumors of neuroectodermal origin: Gliomas, neuroblastomas, and melanomas. J Neuroimmunol 3: 43-62

    Google Scholar 

  • Wikstrand CJ, Grahmann FC, McComb RD, Bigner DD (1985) Antigenic heterogeneity of human anaplastic gliomas and glioma-derived cell lines defined by monoclonal antibodies. J Neuropathol Exp Neurol 44: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y (1980) Studies on immunohistochemical localization of S-100 and GFA proteins in the rat nervous system and in human brain tumors. Brain Nerve 32: 1055–1064

    PubMed  CAS  Google Scholar 

  • Yoshii Y, Maki Y, Tsuboi K, Tomono Y, Nakagawa K, Hoshino T (1986) Estimation of growth fraction with bromodeoxyuridine in human central nervous system tumors. J Neurosurg 65: 659–663

    Article  PubMed  CAS  Google Scholar 

  • Yung WKA, Borit A, Dahl D, Wang E (1984) Keratin and vimentin in meningiomas. J Neuropathol Exp Neurol 43: 299

    Article  Google Scholar 

  • Yung WKA, Luna M, Borit A (1985) Vimentin and glial fibrillary acidic protein in human brain

    Google Scholar 

  • tumors. J Neurooncol 3:35-38

    Google Scholar 

  • Zheng J, Ivarsson B, Collins VP (1986) Monoclonal antibodies to GFAP epitopes available in formaldehyde fixed tissue. Acta Pathol Microbiol Immunol Scand Sect A 94: 353–361

    Google Scholar 

  • Zuber P, Hamou M-F, de Tribolet N (1987) Identification of proliferating cells in human gliomas using the monoclonal antibody Ki-67. Neurosurgery (to be published)

    Google Scholar 

  • Zülch KJ (1979) Histologic Classification of Tumors of the Central Nervous System. International Histological Classification of Tumors, No 21. World Health Organization, Geneva

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kleihues, P., Kiessling, M., Janzer, R.C. (1987). Morphological Markers in Neuro-Oncology. In: Seifer, G. (eds) Morphological Tumor Markers. Current Topics in Pathology, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71356-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71356-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71358-3

  • Online ISBN: 978-3-642-71356-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics