Induction of Cytochrome P-450 and Peroxisome Proliferation in Rat Liver by Perfluorinated Octane Sulphonic Acid (PFOS)

  • T. Ikeda
  • K. Fukuda
  • I. Mori
  • M. Enomoto
  • T. Komai
  • T. Suga
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Perfluorinated octane sulphonic acid (PFOS), the unmetabolizable compound, induced the peroxisome proliferation significantly in rat liver. The common chemical structure of peroxisome proliferators was discussed. After administration of powdered chow containing 0.02%-PFOS to male rats of Wistar-Imamichi strain for 2 weeks, hepatic activities of catalase, cyanogen-insensitive fatty acyl-CoA oxidizing system (FAOS) and carnitine acetyl transferase (CAT) increased 1.74-, 4.90- and 6.84-fold, respectively. The significant induction of 80K-protein, the peroxisomal enoyl-CoA hydratase, was also observed by SDS-polyacrylamide gel electrophoresis. The prominent induction of peroxisome proliferation was demonstrated in electron micrograph. PFOS induced cytochrome P-450 which catalyzes co-hydroxylation of lauric acid, simultaneously. The effects of PFOS on other drug-metabolizing enzyme activities were moderate. Thus, the enhancement of fatty acid metabolism through dicarboxylic acid pathway was indicated.

Keywords

Peroxi Chrome Half Life Beach alKanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ikeda, T., Aiba, K., Fukuda, K., and Tanaka, M. (1985) J. Biochem., 98, 475–482.PubMedGoogle Scholar
  2. 2.
    Johnson, J. D., Gibson, S. J., and Ober, R. E. (1983) In Abstract Papers of First International Symposium on Foreign Compound Metabolism, p. 37, West Palm Beach, Florida, U.S.A.Google Scholar
  3. 3.
    Orton, T. C., and Parker, G. L. (1982) Drug Metab. Dispos., 10, 110–115.PubMedGoogle Scholar
  4. 4.
    Tamburini, P. P., Masson, H. A., Bains, S. K., Makowski, R. J., Morris, B., and Gibson, G. G. (1984) Eur. J. Biochem., 139, 235–246.PubMedCrossRefGoogle Scholar
  5. 5.
    Bains, S. K., Gardiner, S. M., Mannweiler, K., Gillet, D., and Gibson, G. G. (1985) Biochem. Pharmacol., 34, 3221–3229.PubMedCrossRefGoogle Scholar
  6. 6.
    Ikeda, T., Aiba, K., Fukuda, K., Mori, I., Nagasawa, S., Yoshida, T., Komai, T., and Tanaka, M. (1986) J. Pharmacobio- Dyn., 9, s-55, in press.Google Scholar
  7. 7.
    Ishii, H., Horie, S., and Suga, T., (1980) J. Biochem., 87, 1855–1858.PubMedGoogle Scholar
  8. 8.
    Omura, T., and Sato, R. (1964) J. Biol. Chem., 239, 2379–2385.Google Scholar
  9. 9.
    Mortensen, P. B., Kølvraa, S., Gregersen, N., and Rasmussen, K. (1982) Biochim. Biophys. Acta, 713, 393–397.Google Scholar
  10. 10.
    Kølvraa, S., and Gregersen, N. (1986) Biochim. Biophys. Acta, 876, 515–525.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • T. Ikeda
    • 1
  • K. Fukuda
    • 1
  • I. Mori
    • 1
  • M. Enomoto
    • 1
  • T. Komai
    • 1
  • T. Suga
    • 1
    • 2
  1. 1.Analytical and Metabolic Research LaboratoriesSankyo Co., Ltd.Shinagawa, TokyoJapan
  2. 2.Clinical BiochemistryTokyo College of PharmacyHachi-oji, TokyoJapan

Personalised recommendations