Peroxisomal Glycolate Metabolism and the C2 Oxidative Photosynthetic Carbon Cycle

  • N. E. Tolbert
  • R. Gee
  • D. W. Husic
  • S. Dietrich
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

In plants, pathways for the oxidative photosynthetic carbon (C2) cycle, fatty acid β oxidation, and the glyoxylate cycle are associated with peroxisomes. Level of enzyme activity for these pathways may change with the stage of tissue development. A new example is increased β oxidation during leaf senescence. Several changes in peroxisomal metabolism are related to evolutionary development. In unicellular algae, enzymes of the C2 cycle are located in the mitochondria, whereas in multicellular algae and plants most of these enzymes are peroxisomal. It is possible that glycolate metabolism shifted to peroxisomes as a result of low CO2 and high O2 in the atmosphere. Lactate metabolisms also shifted from the D-isomer in most bacteria and algae to the L-isomer in plants with peroxisomes. Using a mutant of Chlamydomonas deficient in cytochrome oxidase, we have shown that the glycolate or D-lactate dehydrogenase is linked to mitochondrial electron transport and the alternative pathway of respiration. The C2 cycle in plants may also be associated with alternative respiration for NADH oxidation during glycine oxidation. This NADH can also be shuttled from mitochondria to peroxisomes via a malate shuttle. Peroxisomal activity is limited by substrate availability. A new example is the countertransport of two intermediates of peroxisomal metabolism, glycolate and glycerate, across the chloroplast envelope. Additionally, a major research effort in plants and algae deals with C02 concentrating mechanisms which regulate the synthesis of glycolate, and therefore, the availability of substrate for peroxisomal C2 metabolism.

Keywords

Glycolate Glycine Respiration Pyruvate Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tolbert, N.E. (1981) Ann. Rev. Biochem. 50, 133–157.PubMedCrossRefGoogle Scholar
  2. 2.
    Gerhardt, B. (1981) FEBS Lett. 126, 71–73.CrossRefGoogle Scholar
  3. 3.
    Godavari, H.R., Badour S.S., and Waygood, E.R. (1973) Plant Physiol. 51, 863–867.PubMedCrossRefGoogle Scholar
  4. 4.
    Reddy, J.K., Warren, J.R., Reddy, M.K., and Lalwani, N.D. (1982) Ann. N. Y. Acad. Sci. 386, 81–110.PubMedCrossRefGoogle Scholar
  5. 5.
    Theimer, R.R. (1976) FEBS Lett. 62, 297–300.PubMedCrossRefGoogle Scholar
  6. 6.
    Tolbert, N.E. (1982) Ann. N. Y. Acad. Sci. 386, 254–268.Google Scholar
  7. 7.
    Husic, D.W., Husic, H.D., and Tolbert, N.E. (1986) CRC Critical Reviews in Plant Sciences. ed. B.V. Conger, in press.Google Scholar
  8. 8.
    Sies, H., Graf, P., Oshino, N., Schering, N., Boveris, A., and Chance, B. (1982) Ann. N. Y. Acad. Sci. 386, 153–164.Google Scholar
  9. 9.
    Day, D.A., Neuburger, M. and Douce R. (1 985) Aust. J. Plant Physiol. 12, 119–130.Google Scholar
  10. 10.
    Dry, I.A. and Wiskich, J.T. (1 985) Aust. J. Plant Physiol. 12, 329–339.Google Scholar
  11. 11.
    Ebbighausen, H., Jia, C., and Heldt, H.W. (1 985) Biochim. Biophys. Acta. 810, 84–199.Google Scholar
  12. 12.
    Laties, G.G. (1982) Ann. Rev. Plant Physiol. 33, 519–555.Google Scholar
  13. 13.
    Husic, D.W. (1986) The Metabolism of D-Lactate and Structurally Related Organic Acids in Ch 1 amydomon a s reinhardtii. Ph.D. Thesis, Michigan State University.Google Scholar
  14. 14.
    Boland, M.J., Hanks, J.F., Reynolds, P.H.J., Blevins, D.E., Tolbert, N.E., and Schubert, K.R. (1982) Planta. 155, 45–51.CrossRefGoogle Scholar
  15. 15.
    Hamilton, G.A., Buckthal, D.J., Mortensen, R.M., and Zerby, K.W. (1979) Proc. Natl. Acad. Sci. USA. 76, 2625–2630.Google Scholar
  16. 16.
    Howitz, K.T. and McCarty, R.E. (1985) Biochemistry. 24, 3645–3650.CrossRefGoogle Scholar
  17. 17.
    Tolbert, N.E., Husic, H.D., Husic, D.W., Moroney, J.V., and Wilson, B.J. (1985) in Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. eds. W. Lucas and J. Badour. Waverly Press. pp. 211–227.Google Scholar
  18. 18.
    Tolbert, N.E. (1984) in Advances in Photosynthesis Research, ed. C. Sybesma. M. Nijhoof/W. Junk Publ. Boston. Vol IV, 181–191.Google Scholar
  19. 19.
    Frederick, S.E., Gruber, P.J., and Tolbert, N.E. (1973) Plant Physiol. 52, 318–323.PubMedCrossRefGoogle Scholar
  20. 20.
    Stabenau, H. (1984) in Compartments in Algal Cells And Their Interaction. Springer-Verlag, Berlin, Heidelberg, pp. 183–190.Google Scholar
  21. 21.
    Halldal, P. and Holmen, A. T. (1 979) Plant Cell Physiol. 20, 757–763.Google Scholar
  22. 22.
    Gruber, P., Frederick, S.E., and Tolbert, N.E. (1974) Plant Physiol. 53, 167–170.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee, R.E. (1980) in Phycology, Cambridge University Press, pp. 355–358.Google Scholar
  24. 24.
    Stabenau, H., Winkler, U. and Softel, W. (1984) Plant Physiol. 75, 531–533.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaback, H.R. (1976) Science 184, 882–892.Google Scholar
  26. 26.
    Husic, D.W. and Tolbert, N.E. (1985) . 78-277–284.Google Scholar
  27. 27.
    Somerville, C.R. and Ogren, W.L. (1979) Trends Biochem. Sci. 7, 171–174.CrossRefGoogle Scholar
  28. 28.
    Lea, P.J., Hall, N.P., Kendall, A.C., Keys, A.J., Miflin, B.J., Turner, J.C., and Wallsgrove, R.M. (1984) in Advances in Photosynthesis Research, C. Sybesma ed., Martinus Nijoff/Dr. W. Junk Publishers, The Hague, Vol. 3, 841.Google Scholar
  29. 29.
    Smith, I.K., Kendall, A.C., Keys, A.J., Turner, J.C., and Lea, R.J. (1984) Plant Sci. Lett. 37, 29–30.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • N. E. Tolbert
    • 1
  • R. Gee
    • 1
  • D. W. Husic
    • 1
  • S. Dietrich
    • 1
  1. 1.Department of BiochemistryMichigan State UniversityEast LansingUSA

Personalised recommendations