The Alkaline Lipase of the Glyoxysomal Membrane Is a Glycoprotein

  • E. Gonzalez
  • M. D. Brush
  • M. Maeshima
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


The presence of N-linked, high-mannose oligosaccharide on alkaline lipase has been demonstrated. Alkaline lipase in glyoxysomes of the endosperm of castor bean (Ricinus communiscv Hale) seedlings, is an intrinsic membrane protein, Mr62,000. The presence of glucosamine-containing oligosaccharides was shown directly by immunoprecipitat ion of lipase which had been labeledin vivoby14C-glucosamine. Lipase was eluted from concanavalin A-Sepharose at high concentration of α-methylglucoside indicating the presence of high mannose-type oligosaccharide. Two cross- reacting polypeptides (CRPs) in the glyoxysomal membrane were also identified. The two glyoxysomal CRPs, 67 kD and 86 kD, did not bind the lectin column under non-denaturing conditions. Nevertheless, the CRPs which were also abundant in carbonate-stripped endoplasmic reticulum were intensely labeled by14C-glucosamine. Treatment with endo-β-N-acetylglucosaminidase H confirmed the presence of N-linked, high mannose oligosaccharide. The possible relationship of the cross-reacting glycopolypeptides to the lipase is under study.


Castor Bean Somal Membrane Intrinsic Membrane Protein Alkaline Lipase Lectin Affinity Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergner, U., and Tanner, W. (1981), FEBS Lett., 131, 68–72.CrossRefGoogle Scholar
  2. 2.
    Bonner, W. M., and Laskey, R. A. (1974), Eur. J. Biochem., 48, 83–88.CrossRefGoogle Scholar
  3. 3.
    Burnette, W. N. (1981), Anal. Biochem., 112, 195–203.PubMedCrossRefGoogle Scholar
  4. 4.
    Clegg, J. C. S. (1982). Anal. Biochem., 127, 389–496.PubMedCrossRefGoogle Scholar
  5. 5.
    Fujiki, Y., Hubbard, A. L., Fowler, B., and Lazarow, P. B. (1982), J. Cell Biol., 93, 97–102.PubMedCrossRefGoogle Scholar
  6. 6.
    Gonzalez, E. (1986), Plant Physiol., 80, 950–955.PubMedCrossRefGoogle Scholar
  7. 7.
    Lord, J. M. and Roberts, L. M. (1982), Ann. N. Y. Acad. Sci., 386, 362–373.CrossRefGoogle Scholar
  8. 8.
    Maeshima, M. and beevers, H. (1985), Plant Physiol., 79, 489–493.PubMedCrossRefGoogle Scholar
  9. 9.
    Melior, R. B., Roberts, L. M., and Lord, J. M. (1979), Biochem. J., 182, 629–631.Google Scholar
  10. 10.
    Mellor, R. B., Roberts, L. M., and Lord, J. M. (1980), J. Exp. Bot., 31, 993–1003.CrossRefGoogle Scholar
  11. 11.
    Muto, S. and Beevers, H. (1974), Plant Physiol., 54, 23–28.PubMedCrossRefGoogle Scholar
  12. 12.
    Suffin, S. C., Muck, K. B., Young, J. C., Lewin, K. and Porter, D. D. (1979), Am. J. Clin. Pathol., 71, 492–496.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • E. Gonzalez
  • M. D. Brush
    • 1
  • M. Maeshima
    • 2
  1. 1.Department of BiologyUniversity of CaliforniaLos AngelesUSA
  2. 2.Faculty of Agriculture, Laboratory of BiochemistryNagoya UniversityChikusaJapan

Personalised recommendations