Advertisement

β-Oxidation Systems in Eukaryotic Microorganisms

  • W.-H. Kunau
  • C. Kionka
  • A. Ledebur
  • M. Mateblowski
  • M. Moreno De La Garza
  • U. Schultz-Borchard
  • R. Thieringer
  • M. Veenhuis
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

In yeasts and fungi capability to degrade fatty acids is not limited to some specialized species of Candida. For example, the methylotropic yeasts Hansenula polymorpha and Pichia pastoris, the methylamine-oxidizing yeast Trichosporon cutaneum, the filamentous fungus Neurospora crassa, and even Saccharomyces cerevisiae (baker’s yeast) possess an inducible, non-mitochondrial ß-oxidation system. The induction by oleate is associated with marked proliferation of microbodies.

Comparison of ß-oxidation proteins of microbodies purified from these eukaryotic microorganisms reveals that they share common features in structure and function with the corresponding peroxisomal proteins from higher eukaryotes. An interesting difference is the non-mitochondrial acyl-CoA dehydrogenase of N. crassa.

The ß-oxidation system in this fungus seems to be localized in a new type of microbodies, non-peroxisomal glyoxysomes. Preliminary evidence suggests that other fungi might contain a similar ß-oxidation system.

Keywords

Pichia Pastoris Neurospora Crassa Eukaryotic Microorganism Peroxisomal Protein Fatty Acid Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lazarow, P.B.,and De Duve, C. (1976) Proc. Natl. Acad. Sci. 73, 2043–2046.CrossRefGoogle Scholar
  2. 2.
    Cooper, T.G., and Beevers, H. (1969) J. Biol. Chem. 244, 3514–3520.PubMedGoogle Scholar
  3. 3.
    Kawamoto, S., Nozaki, Ch., Tanaka, A., and Fukui, S. (1978) Eur. J. Biochem. 83, 609–613.PubMedCrossRefGoogle Scholar
  4. 4.
    Tanaka, A., Osumi, M., and Fukui, S. (1982) Ann. N. Y. Acad. Sci. 386, 183–199.PubMedCrossRefGoogle Scholar
  5. 5.
    Hashimoto, T. (1982) Ann. N. Y. Acad. Sci. 386, 5–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Osumi, T., Ishii, N., Hijikata, M., Kamijo, K., Ozasa, H., Furuta, S., Miyazawa, S., Kondo, K., Inoue, K., Kagamiyama, H., and Hashimoto, T. (1985) J. Biol. Chem. 260, 8905–8910.PubMedGoogle Scholar
  7. 7.
    Frevert, J., and Kindl, H. (1080) Eur. J. Biochem. 107, 79–86.CrossRefGoogle Scholar
  8. 8.
    Frevert, J., and Kindl, H. (1980) Hoppe-Seyler1s Z. Physiol. Chem. 361, 537–542.CrossRefGoogle Scholar
  9. 9.
    Kirsch, T., Loffler, H.G., and Kindl, H. (1986) J. Biol. Chem. in press.Google Scholar
  10. 10.
    Shimzu, S., Yasui, K., Tani, Y., and Yamada, H. (1979) Biochem. Biophys. Res. Commun. 91, 108–113.CrossRefGoogle Scholar
  11. 11.
    Condron, P.E., Frerman, F.E., and Schowalter, D.B. (1983) Arch. Biochem. Biophys. 226, 324–336.CrossRefGoogle Scholar
  12. 12.
    Jiang, Z., and Thorpe, C. (1983) Biochemistry 22, 3752–3758.PubMedCrossRefGoogle Scholar
  13. 13.
    Moreno de la Garza, M., Schultz-Borchard, U., Crabb, J.W., and Kunau, W.-H. (1985) Eur. J. Biochem. 148, 285–291.PubMedCrossRefGoogle Scholar
  14. 14.
    Mateblowski, M., Kionka, Ch., Ledebur, A., Veenhuis, M., and Kunau, W.-H., unpublished resultsGoogle Scholar
  15. 15.
    Kionka, Ch., and Kunau, W.-H. (1985) J. Bacterid. 161, 153–157.Google Scholar
  16. 16.
    Ueda, M., Yamanoi, K., Morikawa, T., Okada, H., and Tanaka, A. (1985) Agr. Ciol. Chem. 49, 1821–1828.CrossRefGoogle Scholar
  17. 17.
    Mateblowski, M., Douma, A., Veenhuis, M., and Kunau, W.-H., unpublished results.Google Scholar
  18. 18.
    Lazarow, P.B., and Fujiki, Y. (1985) Ann. Rev. Cell Biol. 1, 489–530.PubMedCrossRefGoogle Scholar
  19. 19.
    Borst, P. (1986) Biochim. Biophys. Acta 866, 179–203.PubMedGoogle Scholar
  20. 20.
    Kawaguchi, A., Tsubotani, S., Seyama, Y., Yamakawa, T., Osumi, T., Hashimoto, T., Kikuchi, T., Ando, M., and Okuda, S. (1980) J. Biochem. 88, 1481–1486.PubMedGoogle Scholar
  21. 21.
    Bremer, J., and Osmundsen, H. in: Fatty Acid Metabolism and its Regulation (Eds. A. Neuberger and L.L.M. van Deenen ) pp. 113–154, Elsevier 1984.Google Scholar
  22. 22.
    Schulz, H. in: Biochemistry of Lipids and Membranes (Eds. D.E. Vance and J.E. Vance ) pp. 116–142, The Benjamin/Cummings Publishing Company 1985.Google Scholar
  23. 23.
    Dommes, V., Baumgart, C., and Kunau, W.-H. (1981) J. Biol. Chem. 256, 8259–8262.PubMedGoogle Scholar
  24. 24.
    Thieringer, R., Kionka, Ch., Schultz-Borchard, U., and Kunau, W.-H. (1985) Abstr. UNESCO-IUB Workshop Zeist.Google Scholar
  25. 25.
    Furuta, S., Miyazawa, S., and Hashimoto, T. (1981) J. Biochem. 90, 1739–1750.PubMedGoogle Scholar
  26. 26.
    Davidson, B., and Schulz, H. (1982) Arch. Biochem. Biophys. 213, 155–162.PubMedCrossRefGoogle Scholar
  27. 27.
    Dommes, V., and Kunau, W.-H. (1984) J. Biol. Chem. 259, 1789–1797.PubMedGoogle Scholar
  28. 28.
    Ikeda, Y., Okamura-Ikeda, K., and Tanaka, K. (1985) J. Biol. Chem. 260, 1311–1325.PubMedGoogle Scholar
  29. 29.
    Moreno de la Garza, M., and Kunau, W.-H., unpublished results.Google Scholar
  30. 30.
    Mateblowski, M., and Kunau, W.-H., unpublished results.Google Scholar
  31. 31.
    Middleton, B. (1975) Meth. Enzymol. 35B, 128–136.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyazawa, S., Furuta, S., Osumi, T., Hashimoto, T., and Ui, N. (1981) J. Biochem. 90, 511–519.PubMedGoogle Scholar
  33. 33.
    Thieringer, R., and Kunau, W.-H., unpublished results.Google Scholar
  34. 34.
    Kionka, Ch., Schultz-Borchard, U., and Kunau, W.-H., unpublished results.Google Scholar
  35. 35.
    Theimer, R.R., Wanner, G., and Anding, G. (1978) Cytobiology 18, 132–144.Google Scholar
  36. 36.
    Wanner, G., and Theimer, R.R. (1982) Ann. N. Y. Acad. Sci. 386, 269–284.PubMedCrossRefGoogle Scholar
  37. 37.
    Kionka, Ch., Thieringer, R., and Kunau, W.-H., unpublished results.Google Scholar
  38. 38.
    Opperdoes, F.R., Borst, P., Bakker, S., and Leene, W. (1977) Eur. J. Biochem. 76, 29–39.PubMedCrossRefGoogle Scholar
  39. 39.
    Nunn, W.D. (1986) Microbiol. Review 50, 179–192.Google Scholar
  40. 40.
    Yang, S., and Schulz, H. (1983) J. Biol. Chem. 258, 9780–9785.PubMedGoogle Scholar
  41. 41.
    Burmann, Ch., Schroder, M., and Kunau, W.-H., unpublished results.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • W.-H. Kunau
    • 1
  • C. Kionka
    • 1
  • A. Ledebur
    • 1
  • M. Mateblowski
    • 1
  • M. Moreno De La Garza
    • 1
  • U. Schultz-Borchard
    • 1
  • R. Thieringer
    • 1
  • M. Veenhuis
    • 2
  1. 1.Institute of Physiological Chemistry, Ruhr-UniversityGermany
  2. 2.Biological CentreUniversity of GroningenHarenThe Netherlands

Personalised recommendations