Skip to main content

Constitutive Heterochromatin and Evolutionary Divergence of Mus dunni, M. booduga and M. musculus

  • Conference paper
The Wild Mouse in Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 127))

Abstract

The Indian pygmy field mice are one of the most interesting groups of animals from evolutionary point of view and include two morphologically extremely similar species Mus dunni and Mus booduga which share widely common natural habitats and until recently were considered conspecific. They are closely allied to the aboriginal mice Mus musculus and are distinguished from each other only on the basis of average characters (Ellerman 1961). The predominant diploid chromosome number in all the three species is 40 but while the karyotypes of M. musculus and M. booduga with all acrocentric chromosomes are identical, that of M. dunni is distinct due to invariable presence of large submetacentric X and acrocentric Y sex chromosomes. M. dunni populations from different localities also exhibit polymorphism in the number of biarmed autosomes (Matthey and Petter 1968; Sharma and Garg 1975; Markvong et al. 1975; Manjunatha and Aswathanarayana 1979; Sen and Sharma 1980/ 1983). The close morphometric and cytogenetic alliance of pygmy mice with a species like M. musculus that has been extensively utilized in molecular genetic and immunological investigations make these an attractive choice for detailed phylogenetic considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown SDM, Dover GA (1980a) Conservation of segmental variants of satellite DNA of Mus musculus in a related species: Mus spretus. Nature (Lond) 285:47–49

    Article  CAS  Google Scholar 

  • Brown SDM, Dover GA (1980b) The specific organization of satellite DNA sequences on the X chromosome of Mus musculus: partial independence of chromosome evolution. Nucleic Acids Res 8: 781–792

    Article  PubMed  CAS  Google Scholar 

  • Committee on standardized genetic nomenclature for mice (1972) Standard karyotype of the mouse, Mus musculus

    Google Scholar 

  • Duffey PA (1972) Chromosome variation in Peromyscus: a new mechanism. Science 176:1333–1334

    Article  PubMed  CAS  Google Scholar 

  • Ellerman JR (1961) Fauna of India, Mammalia, Vol III, Rodentia, 2nd edn. Roonwal ML (ed) Zoological Survey of India

    Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of HS alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Gall JG, Atherton DD (1974) Satellite DNA sequences in D. virilis. J Mol Biol 85:663–664

    Article  Google Scholar 

  • Gamperl R, Ehmann C, Bachmann K (1982) Genome size and heterochromatin variation in rodents. Genetica 58:199–212

    Article  CAS  Google Scholar 

  • Hatch FT, Bodner AJ, Mazrimas JA, Moore DH (1976) Satellite DNA and cytogenetic evolution. DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (Genus Dipodomys). Chromosoma (Berl) 58:155–168

    Article  CAS  Google Scholar 

  • Heth G, Nevo E (1981) Origin and evolution of ethological isolation in subterranean mole rats. Evolution 35:259–274

    Article  Google Scholar 

  • Hörz W, Zachau HG (1977) Characterization of distinct segments in mouse satellite DNA by restriction nucleases. Eur J Biochem 73:383–392

    Article  PubMed  Google Scholar 

  • Manjunatha KR, Aswathanarayana NV (1979) Studies on the chromosomes of the genus Mus: Autosomal polymorphism in the Indian pygmy mouse Mus dunni (Wroughton). Curr Sci 48:657–659

    Google Scholar 

  • Markvong A, Marshall JT, Pathak S, Hsu TC (1975) Chromosomes and DNA of Mus: The karyotype of M. fulvidiventris and M. dunni. Cytogenet Cell Genet 14:116–125

    Article  PubMed  CAS  Google Scholar 

  • Marshall JT (1977) A synopsis of Asian species of Mus (Rodentia, Muridae). Amer Mus Nat Hist Bull 58:173–220

    Google Scholar 

  • Matthey R, Petter F (1968) Existence de deux espices distinctes, l’une chromosomiquement polymorphe chez der Mus Indiens de groupe booduga. Etude cytogenetique et taxonomique. Rev Suisse Zool 75:461–498

    PubMed  CAS  Google Scholar 

  • Misonne X (1969) African and Indo-Australian Muridae, Evolutionary trends. Annls Mus Afr Cent Ser Zool 172:1–219

    Google Scholar 

  • Pathak S, Hsu TC, Arrighi FE (1973) Chromosomes of Peromyscus (Rodentia, Cricetidae) IV. The role of heterochromatin in karyotypic evolution. Cytogenet Cell Genet 12:315–326

    Article  PubMed  CAS  Google Scholar 

  • Patton JL, Sherwood SW (1982) Genome evolution in pocket gophers (Genus Thomomys) I. Heterochromatin variation and special potential. Chromosoma (Berl) 85:149–162

    Article  CAS  Google Scholar 

  • Peacock WJ, Appels R, Dunsmuir P, Lohe AR, Gerlach WL (1976) Highly repeated DNA sequences: chromosomal localization and evolutionary conservation in Inter Cell Biol (eds) Brinkley BR, Porter KR. Rockefeller Univ Press 494–506

    Google Scholar 

  • Peacock WJ, Lohe AR, Gerlach WL, Dunsmuir P, Dennis ES, Appels R (1978) Fine structure and evolution of DNA in heterochromatin. Cold Spring Harb Symp Quant Biol 42:1121–1135

    PubMed  CAS  Google Scholar 

  • Rigby PWJ, Dieckman M, Rhodes C, Berg P (1977) Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Article  PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Sharma T (1980) Quantitative variation of “Mus musculus-like” constitutive heterochromatin and satellite DNA-sequences in the genus Mus. Chromosoma (Berl) 81:393–402

    Article  CAS  Google Scholar 

  • Sen S, Sharma T (1983) Role of constitutive heterochromatin in evolutionary divergence: results of chromosome banding and condensation inhibition studies in Mus muscuius, Mus booduga and Mus dunni. Evolution 37:628–636

    Article  Google Scholar 

  • Sharma T, Raman R (1973) Variation of constitutive heterochromatin in the sex chromosomes of the rodent Bandicota b. bengalensis (Gray). Chromosoma (Berl) 41:75–84

    CAS  Google Scholar 

  • Sharma T, Garg GS (1975) Constitutive heterochromatin and karyotype variation in India pygmy mouse, Mus dunni. Genet Res (Camb) 25:189–191

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  PubMed  CAS  Google Scholar 

  • Sutton WD, McCallum M (1972) Related satellite DNAs in the genus Mus. J Mol Biol 71:633–656

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Miklos GLG (1978) Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the function of satellite DNA. Chromosoma (Berl) 66:71–98

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Sharma, T., Cheong, N., Sen, P., Sen, S. (1986). Constitutive Heterochromatin and Evolutionary Divergence of Mus dunni, M. booduga and M. musculus . In: Potter, M., Nadeau, J.H., Cancro, M.P. (eds) The Wild Mouse in Immunology. Current Topics in Microbiology and Immunology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71304-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71304-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71306-4

  • Online ISBN: 978-3-642-71304-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics