Advertisement

Mediatoren in der Pathogenese des akuten Atemnotsyndroms (ARDS)

  • H. Neuhof
Conference paper

Zusammenfassung

Beim ARDS handelt es sich um ein akutes Lungenversagen, das im Anschluß an extrapulmonale Erkrankungen oder im Zusammenhang mit pulmonalen Affektionen auftreten kann und bedingt ist durch eine initiale Störung der kapillären und alveolären Schrankenfunktion, der im weiteren Verlauf ein proliferativer — fibrosierender Umbau des Lungenparenchyms folgt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson FL, Tsagaris TJ, Jubiz W, Kuida H (1975) Prostaglandin F and E levels during endotoxin-induced pulmonary hypertension in calves. Am J Physiol 228: 1479–1482PubMedGoogle Scholar
  2. Anderson FL, Jubiz W, Tsagaris TJ, Kuida H (1975) Endotoxininduced prostaglandin E and F release in dogs. Am J Physiol 228: 410–414PubMedGoogle Scholar
  3. Anhut H, Peskar BA, Bernauer W (1978) Release of 15-keto-13, 14-dihydro-thromboxan B2 and prostaglandin D2 during anaphylaxis as measured by radioimmunoassay. Naunyn-Schmiedebergs Arch Pharmacol 305: 247–252PubMedCrossRefGoogle Scholar
  4. Barnhardt MI, Chien S (1978) Platelet-vessel wall dynamics. Tromb Haemost [Suppl] 63: 301–317Google Scholar
  5. Bayley T, Clements JA, Osbahr AJ (1967) Pulmonary and circulatory effects of fibrinopeptides. Circ Res 21: 469–485PubMedGoogle Scholar
  6. Becker EL, Showeil HJ, Henson PM, Hsu LS (1974) The ability of chemotactic factors to induce lysosomal enzyme release. J Immunol 112: 2047–2054PubMedGoogle Scholar
  7. Belew M, Gerdin B, Porath J, Saldeen T (1978) Isolation of vaso-active peptides from human fibrin and fibrinogen degraded by plasmin. Thromb Res 13: 983–994PubMedCrossRefGoogle Scholar
  8. Busch C, Gerdin B (1981) Effect of low molecular weight fibrin degradation products on endothelial cells in culture. Thromb Res 22: 33–39PubMedCrossRefGoogle Scholar
  9. Cochrane CG, Spragg RG, Revak SD, Cohen AB, McGuire WW (1983) The presence of neutrophil elastase and evidence of oxidant activity in bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis [Suppl] 127(2): 25Google Scholar
  10. Cook JA, Wise WC, Halushka PV (1980) Elevated thromboxane levels in rat during endotoxin shock. J Clin Invest 65: 227–240PubMedCrossRefGoogle Scholar
  11. Copley AL, Hanig JP, Luchini B W, Allen RL (1967) On the capillary permeability enhancing activity of isolated fibrinopeptides and their role in the physiology of the blood capillary wall. Bibl Anat 9: 475–481PubMedGoogle Scholar
  12. Craddock PR, Hammerschmidt D, White JG, Dalmasso AP, Jacob HS (1977) Complement (C 5a)- induced granulocyte aggregation in vitro. J Clin Invest 60: 260–264PubMedCrossRefGoogle Scholar
  13. Dahlén SE, Björk P, Hedqvist et al. (1981) Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: In vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 78: 3887–3891PubMedCrossRefGoogle Scholar
  14. Eisen V, Walker DI, Binysh SG, Tedder RS (1977) Prostaglandins and complement changes in some conditions related to inflamation. Agents Actions 2: 99–108Google Scholar
  15. Fritz H, Jochum M (1984) Granulocyte proteinases as mediators of unspezific proteolysis in inflammation: A review, de Gruyter, Berlin New York (Selected Topics in Clinical Enzymology 2: 305–327)Google Scholar
  16. Fritz H, Jochum M, Duswald KH, Dittmer H, Kortmann H (1984) Granulocyte proteinases as mediators of unspecific proteolysis in inflammation: A review. In: Goldberg DM, Werner M (eds) Selected topics in clinical enzymology, vol 2. De Gruyter, Berlin, pp 305–328Google Scholar
  17. Fröhlich JC, Ogletree M, Peskar BA, Brigham KL (1980) Pulmonary hypertension correlated to pulmonary thromboxane synthesis. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, vol 7. Raven, New York, pp 745Google Scholar
  18. Gallin JI (1976) The role of Chemotaxis in the inflammatory-immune response of the lung. In: Kirkpatrik CH, Reynolds HY (eds) Immunology and infections in the lung. Dekker, New York Basel, pp 161–178Google Scholar
  19. Gerdin B, Belew M, Lindquist O, Saldeen T (1979) Effect of fibrin derived peptides on pulmonary microvascular permeability. In: Saldeen T (ed) The microembolism syndrome. Almquist & Wik- sell, Stockholm, pp 233–239Google Scholar
  20. Gersmeyer EF, Spitzbarth H (1961) Über Kreislaufwirkungen von synthetischem Bradykinin beim Menschen und beim wachen Hund. Klin Wochenschr 39: 1227–1233PubMedCrossRefGoogle Scholar
  21. Goetz A, Conzen P, Oettinger W, Brendel W (1983) Einfluß der alveolären Hypoxie auf das Prostaglandinsystem der Lunge - Mögliche Beteiligung an der Entstehung des ARDS. Anaesthe- sist 32: 175Google Scholar
  22. Goldstein IM, Roos D, Kaplan HB, Weissmann G (1975) Complement and immunoglobins stimulate Superoxide production by human leukocytes independently of phagocytosis. J Clin Invest 56: 1155–1163PubMedCrossRefGoogle Scholar
  23. Hales CA, Rouse ET, Slate JL (1978) Influence of aspirin and indomethacin on variability of alveolar hypoxic vasoconstriction. J Appl Physiol 45: 33–39PubMedGoogle Scholar
  24. Hammerschmidt DE, Craddock PR, Mullough J, Kronenberg RS, Dalmasso AP, Jacob HS (1978) Complement activation and pulmonary leukostasis during nylon fiber filtration leukopheresis. Blood 51: 721–730PubMedGoogle Scholar
  25. Heideman M, Kaijser B, Gelin LE (1978) Complement activation and hematologic, hemodynamic, and respiratory reactions early after soft-tissue injury. J Trauma 18: 696–700PubMedCrossRefGoogle Scholar
  26. Heideman M, Kaijser B, Gelin LE (1979) Complement activation early in endotoxin shock. J Surg Res 26: 74–78PubMedCrossRefGoogle Scholar
  27. Hong SL, Levine L (1976) Stimulation of prostaglandin synthesis by bradykinin and thrombin and their mechanism of action on MCS-Fibroblasts. J Biol Chem 251: 5814–5816PubMedGoogle Scholar
  28. Jacob HS, Craddock PR, Hammerschmidt DE, Moldow CF (1980) Complement-induced granulocyte aggregation. N Engl J Med 302: 789–794PubMedCrossRefGoogle Scholar
  29. Jochum M, Duswald KH, Neumann S, Witte J, Fritz H (1984) Proteinases and their inhibitors in septicemia - Basic concepts and Clinical Implications. In: Hörl W, Heidland A (eds) Proteases, potential role in health and disease. Plenum, New York London (Advances in Experimental Medicine and Biology 167: 391–404)Google Scholar
  30. Kadish JL, Butterfield CE, Folkman J (1979) The effect of fibrin on cultured vascular cells. Tissue Cell 11: 99–108PubMedCrossRefGoogle Scholar
  31. Kennedy MS, Stobo JD, Goldyne ME (1980) In vitro synthesis of prostaglandins and related lipids by populations of human peripheral mononuclear cells. Prostaglandins 20: 135PubMedCrossRefGoogle Scholar
  32. Lasch HG, Heene DL, Huth K, Sandritter W (1967) Pathophysiology, clinical manifestations and therapy of consumption-coagulopathy („Verbrauchskoagulopathy“). Am J Cardiol 20: 381PubMedCrossRefGoogle Scholar
  33. Lefer AM (1982) Vascular mediators in ischemia and shock. In: Cowley RA, Trump BF (eds) Pathophysiology of shock, anoxia and ischemia. Williams & Wilkins, Baltimore London, pp 165–181Google Scholar
  34. Lough J, Moore S (1975) Endothelial injury induced by thrombin or thrombi. Lab Invest 33:130–135PubMedGoogle Scholar
  35. Manwarning D, Curreri PW (1980) The role of platelet aggregation and release in fragment D- induced pulmonary dysfunction. Ann Surg 192: 103–107CrossRefGoogle Scholar
  36. Manwarning D, Curreri PW (1982) Platelet and neutophil sequestration after fragment D-induced respiratory distress. Circ Shock 9: 75–80Google Scholar
  37. McGuire WW, Spragg RG, Cohen AB, Cochrane CG (1982) Studies of the pathogenesis of the adult respiratory distress syndrome. J Clin Invest 69: 543–553PubMedCrossRefGoogle Scholar
  38. McDonald JA, Baum BJ, Rosenberg DM, et al (1979) Destruction of a major extracellular adhesive glycoprotein (fibronectin) of human fibroblasts by neutral proteases from polymorphnuclear leukocyte granules. Lab Invest 40: 350–357PubMedGoogle Scholar
  39. Mittermayer C, Riede UN, Bleyl U, Herzog H, v. Wiehert P, Riesner K (1978) Schocklunge. Verh Dtsch Ges Pathol 63: 1165Google Scholar
  40. Moncada S, Vane JR (1978) Unstable metabolites of arachidonic acid and their role in haemostasis and thrombosis. Br Med Bull 34: 129–135PubMedGoogle Scholar
  41. Mullane KM, Moncada S (1980) Prostacylin release and the modulation of some vasoactive hormones. Prostaglandins 20: 25–49PubMedCrossRefGoogle Scholar
  42. Müller-Esterl W, Rauth G, Fritz H, Lottspeich F, Henschen A (1983) Human Kininogens. In: Haberland GL, Rohen JW, Fritz H, Huber P (eds) Kininogenases. Schattauer, Stuttgart, pp 3–28Google Scholar
  43. Neuhof H (1981) Blood coagulation in hemorrhagic shock In: Rügheimer E, Zindler M (eds) Anaesthesiology. Excerpta Medica 538Google Scholar
  44. Neuhof H, Sablofski I, Wilhelmi J, Hey D, Lasch HG (1977) Activation of intravascular coagulation by bromocarbamide. Int J Clin Pharmacol Ther Toxicol 15: 176–180Google Scholar
  45. Neuhof H, Noack A, Hoffmann C, Seeger W (1985) Thromboxanemediated pulmonary vasconstric- tion in rabbits induced by acute alveolar hypoxia. In: Schrör K (ed) Prostaglandins and other eicosanoids in the cardiovascular system. Karger, Basel, pp 328–334Google Scholar
  46. Ogletree M, Brigham KL (1979) Indomethacin augments endotoxin induced increased lung vascular permeability in sheep. Am Rev Respir Dis 119: 383Google Scholar
  47. Polley MJ, Nachman RL, Weksler BB (1981) Human complement in the arachidonic acid transformation pathway in platelets. J Exp Med 153: 257–268PubMedCrossRefGoogle Scholar
  48. Riede UN, Mittermayer C, Rohrbach R, Joh K, Vogel W, Fringes (1982) Mikrothrombosierung der Endstrombahn als Ursache schockbedingter Organkomplikationen (unter besonderer Berücksichtigung der Schocklunge). Haemostasiologie 2: 3–24Google Scholar
  49. Rietschel ET, Zähringer U, Wollenweber HW, Miragliotta G, Musehold J, Lüderitz T, Schade U (1984) Bacterial endotoxins: Chemical structure and biologic activity. Am J Emerg Med 2: 60–69PubMedCrossRefGoogle Scholar
  50. Saba TM, Jaffe E (1980) Plasma fibronectin (Opsonic glycoprotein): Its synthesis by vascular endothelial cells and role in cardiopulmonary integrity after trauma as related to reticuloendothelial function. Am J Med 68: 577–594PubMedCrossRefGoogle Scholar
  51. Sacks T, Moldow CF, Craddock PR, et al (1978) Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. J Clin Invest 61: 1161–1167PubMedCrossRefGoogle Scholar
  52. Saldeen T (1979) Blood coagulation and shock. Pathol Res Pract 165: 221–252PubMedCrossRefGoogle Scholar
  53. Saldeen T (1980) Fibrin derived peptides as mediators of increased vascular permeability. Acta Chir Scand [Suppl] 499: 67–72Google Scholar
  54. Samuelsson B, Borgeat P, Hammarström S, Murphy RC (1980) Leucotrienes: A new group of biologically active compounds. In: Samuelsson B, Ramwell P, Paoletti R (eds) Advances in prostaglandin and thromboxane research, vol 6. Raven, New York, pp 1–18Google Scholar
  55. Saugstad OD, Aasen AO, Guldvog I (1980) Activation of the kallikrein-kinin system during experimental lung insufficiency in dogs. Acta Chir Scand [Suppl] 499: 123–129Google Scholar
  56. Schlag GH, Redl H (1980) Die Leukostase in der Lunge beim hypovolämisch-traumatischen Schock. Anaesthesist 29: 606–612PubMedGoogle Scholar
  57. Schrör K (1982) Bedeutung von Prostaglandinen und anderen Eicosanoiden für das Verhalten der Mikrozirkulation beim Schock. Hämostasiologie 2: 73–81Google Scholar
  58. Schrör K (1984) Prostaglandine und verwandte Verbindungen. Thieme, Stuttgart New YorkGoogle Scholar
  59. Seeger W, Neuhof H, Graubert E, Wolf H, Röka L (1982a) Comparative influence of the Ca- ionophore A 23187, bradykinin, kallidin and eledoisin on the rabbit pulmonary vasculature with special reference to arachidonate metabolism. Adv Exp Med Biol 156: 533–552Google Scholar
  60. Seeger W, Wolf H, Stähler G, Neuhof H, Röka L (1982b) Increased pulmonary vascular resistance and permeability due to arachidonate metabolism in isolated rabbit lungs. Prostaglandins 23: 157–173PubMedCrossRefGoogle Scholar
  61. Seeger W, Stöhr G, Wolf H, Neuhof H (1985) Alteration of surfactant function due to protein leakage. Special interaction with fibrin monomer. J Appl Physiol 58: 326–338PubMedGoogle Scholar
  62. Stimler NP, Brocklehurst WE, Bloor CM, Hugli TE (1980) Complement anaphylatoxin C5a stimulates release of SRS-A-like activity from guinea-pig lung fragments. J Pharm Pharmacol 32: 804PubMedCrossRefGoogle Scholar
  63. Sueishi K, Nanno S, Tanaka K (1981) Permeability enhancing and chemotactic activities of lower molecular weight degradation products of human fibrinogen. Thromb Haemost 45: 90–94PubMedGoogle Scholar
  64. Travis J, Beatty K, Matheson N (1984) Oxidation of alpha-1-proteinase inhibitor significance for pathobiology. In: Horl H, Heidland A (eds) Proteases: Potential role in health and disease. Plenum, New York (Advances in Experimental Medicine and Biology 167: 89–95)Google Scholar
  65. Weiss JW, Drazen JM, Coles N, Mc Fadden jr ER, Austen KF (1982) Bronchoconstrictor effect of leucotriene C in humans. Science 216: 196PubMedCrossRefGoogle Scholar
  66. Wilson JW (1972) Leukocyte sequestration and morphological augmentation in the pulmonary network following hemorrhagic shock and related forms of stress. Adv Microcirc 4: 197–232Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. Neuhof

There are no affiliations available

Personalised recommendations