Skip to main content

Zusammenfassung

Die maschinelle Beatmung von Patienten mit akuter respiratorischer Insuffizienz bewirkt über die Erhöhung des transpulmonalen Drucks eine Zunahme der funktionellen Residualkapazität, der pulmonalen Compliance und eine Abnahme der venösen Beimischung im arteriellen Blut (Tabelle 1). Insgesamt führen diese Effekte zu einer Verbesserung des Gasaustausches in der Lunge. Jedoch steht einer Steigerung des arteriellen O2-Gehalts u.U. ein Abfall des Herzzeitvolumens (HZV) gegenüber [2,38,53,55]. So können selbst bei positiver Beeinflussung des arteriellen O2-Gehalts erhöhte intrathorakale Drücke über diesen unerwünschten Effekt zu einer Senkung der O2-Transportkapazität führen [46, 59]. Es besteht bis heute kein einheitliches pathophysiologisches Konzept über die Ursachen der hämodynamischen Nebenwirkungen von Veränderungen des extrakardialen Drucks infolge der Erhöhung des intrathorakalen Drucks durch Beatmung. Man ist auf die Interpretation von Ergebnissen angewiesen, die nur für eine bestimmte Situation repräsentativ sind und sich nicht immer zu einer generellen Regel erheben lassen. Die Gründe für eine Beeinträchtigung des HZV sind immer noch Gegenstand von Diskussionen, obwohl schon vor fast 60 Jahren experimentell eine Beziehung zwischen mechanischer Beatmung und HZV-Verminderung nachgewiesen wurde [32].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Annat G, Viale JP, Bui Xuan B, Aissa OH, Benzoni D, Vincent M, Gharib C, Motin J (1983) Effect of PEEP Ventilation on renal function, plasma renin, aldosteron, neurophysins and urinary ADH, and prostaglandins. Anesthesiology 58: 136–141

    Article  PubMed  CAS  Google Scholar 

  2. Augustin HJ, Bischoff K, Engels TH (1979) Der Einfluß von Dopamin auf die Nierenfunktion während kontinuierlicher Überdruckbeatmung (PEEP). Anästhesist 28: 159–162

    Google Scholar 

  3. Avasthey P, Wood EH (1974) Intrathoracic and venous pressure relationships during responses to changes in body position. J Appl Physiol 32 (2): 166–175

    Google Scholar 

  4. Baum M, Benzer H, Mutz N, Pauser G, Tonezar L (1980) Inversed ratio ventilation (IRV)-ARDS. Anästhesist 29: 592–596

    CAS  Google Scholar 

  5. Beyer J, Meßmer K (1980) Organdurchblutung und Sauerstoffversorgung. Springer, Berlin Heidelberg New York (Anästhesiologie und Intensivmedizin, Bd 145)

    Google Scholar 

  6. Beyer J, Schosser R, Meßmer K (1981) Coronary blood flow during PEEP ventilation. Bibl Anat 20: 521–524

    Google Scholar 

  7. Bjurstedt H, Rosenhammer G, Lindborg B, Hesser CM (1979) Respiratory and circulatory responses to sustained positive-pressure breathing and exercise in man. Acta Physiol Scand 105: 204–214

    Article  PubMed  CAS  Google Scholar 

  8. Brinker JA, Weiss JL, Lappe DL, Rabson JL, Summer WR, Permutt S, ML (1980) Leftward septal displacement during right ventricular loading in man. Circulation 61: 626–633

    PubMed  CAS  Google Scholar 

  9. Buckley M, Ogden E, Linton D (1955) The effects of work load and heart rate on filling of the isolated right ventricle of the dog heart. Circ Res 3: 434

    PubMed  CAS  Google Scholar 

  10. Burnstock G, Griffith SG (1983) Die Innervation der glatten Muskulatur terminaler Gefäße. In: Meßmer K, Hammersen F (Hrsg) Vasomotion und quantitative Kapillaroskopie. Karger, Basel München Paris London New York Tokyo Sydney, S 19

    Google Scholar 

  11. Cassidy SS, Ramanthan M (1984) Dimensional analysis of the left ventricle during PEEP: relative septal and lateral wall displacements. Am J Physiol 246: H792–805

    Google Scholar 

  12. Cassidy SS, Robertson CH, Pierce AK, Johnson RL (1978) Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol 44: 743–750

    PubMed  CAS  Google Scholar 

  13. Craig KC, Pierson DJ, Carrico CJ (1985) The clinical application of positive end-expiratory pressure (PEEP) in the adult respiratory distress-syndrome (ARDS). Respir Care 30: 184–201

    Google Scholar 

  14. Ditchey RV (1984) Volume-dependent effects of positive airway pressure on intracavitary left ventricular enddiastolic pressure. Circulation 69: 815–821

    Article  PubMed  CAS  Google Scholar 

  15. Duma S, Baum M, Benzer H, Koller W, Mutz N, Pauser G (1982) Inversed ratio ventilation (IRV) nach kardiochirurgischen Eingriffen. Anaesthesist 31: 549–556

    PubMed  CAS  Google Scholar 

  16. Elzinga G, Grondelle R van, Westerhof N, Bos GC van den (1974) Ventricular interference. Am J Physiol 226: 941–947

    PubMed  CAS  Google Scholar 

  17. Elzinga G, Piene H, Jong JP de (1980) Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated ceat heart. Circ Res 46: 564–574

    PubMed  CAS  Google Scholar 

  18. Feneley MP, Gavaghan TP, Baron DW, Branson JA, Roy PR, Morgan JJ (1985) Contribution of left ventricular contraction to the generation of right ventricular systolic pressure in the human heart. Circulation 71: 473–480

    Article  PubMed  CAS  Google Scholar 

  19. Fewell JE, Abendschein DR, Carlson J, Murray JF, Rapaport E (1980) Continuous positive-pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog. Circ Res 46: 125–132

    PubMed  CAS  Google Scholar 

  20. Glantz SA, Misbach GA, Moores WY, Mathey DG, Lekven J, Stowe DF, Tybers JV (1978) The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ Res 42: 433–441

    PubMed  CAS  Google Scholar 

  21. Guyton AC, Jones CE, Coleman TG (1974) Circulatory Physiology: Cardiac output and its regulation, 2nd edn. Saunders, Philadelphia London Toronto, S 427

    Google Scholar 

  22. Guzman PA, Maughan WLl, Yin FC, Eaton LW, Brinker JA, Weisfeldt ML, Weiss JL (1981) Transseptal pressure gradient with leftward septal displacement during the Mueller mancevre in man. Br Heart J 46: 657–662

    Article  PubMed  CAS  Google Scholar 

  23. Forst H, Racenberg J, Fujita Y, Zeintl H, Meßmer K (1984) Does “PEEP” influence right ventricular performance? Eur Surg Res 16/Suppl 1: 34

    Google Scholar 

  24. Forst H, Racenberg J, Meßmer K (1985) Disturbed ventricular interdependence during ventilation with positive end-expiratory pressure (PEEP). International symposium on right ventricular function, Paris 1985 (Abstractband)

    Google Scholar 

  25. Funk W, Intaglietta M (1983) Spontane arterioläre Vasomotion. In: Meßmer K, Hammersen F (Hrsg) Vasomotion und quantitative Kapillaroskopie. Karger, Basel München Paris London New York Tokyo Sydney, S 74

    Google Scholar 

  26. Hall S, Johnson E, Hedley-Whyte (1974) Renal hemodynamics and function with continuous positive-pressure ventilation in dogs. Anesthesiology 41: 452–461

    Article  PubMed  CAS  Google Scholar 

  27. Hammersen F (1977) Bau und Funktion der Blutkapillaren. In: Altmann HW, Büchner F, Lottier H, Grundmann F, Holle G, Letterer E, Mosshoff W, Meesen H, Roulet F, Seifert G, Siebert G (Hrsg) Handbuch der Allgemeinen Pathologie. Springer, Berlin Heidelberg New York, S 135

    Google Scholar 

  28. Hammersen F, Hammersen E (1985) Das Endothel — ein disseminiertes metabolisch aktives Organ. In: Meßmer K (Hrsg) Angiodynamik und Angiopathie. Zuckschwerdt, München Bern Wien, S 15

    Google Scholar 

  29. Haldén E, Jakobsen S, Janeros L, Norlen K (1982) Effects of positive end-expiratory pressure on cardiac output distribution in the pig. Acta Anaesthesiol Scand 26: 403–408

    Article  PubMed  Google Scholar 

  30. Hemmer M, Suter P (1979) Treatment of cardiac and renal effects of PEEP with dopamine in patients with acute respiratory failure. Anesthesiology 50: 399–403

    Article  PubMed  CAS  Google Scholar 

  31. Hemmer M, Viquerat CE, Suter PM, Valleten DW (1980) Urinary antidiuretic hormone excretion during mechanical ventilation and weaning in man. Anesthesiology 52: 395–400

    Article  PubMed  CAS  Google Scholar 

  32. Hugget ASG (1924) Studies on the respiration and circulation of the cat. IV: The heart output during respiratory obstruction. Am J Physiol 59: 373–381

    Google Scholar 

  33. Janicki JS, Weber KT (1980) The pericardium and ventricular interaction, distensibility, and function. Am J Physiol (Heart Circ Physiol) 238: H494-H503

    CAS  Google Scholar 

  34. Jardin F, Farcot JCH, Boisante L, Curien N, Margairaz A, Boudarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304: 387–392

    Article  PubMed  CAS  Google Scholar 

  35. Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1984) Echocardiographic evaluation of ventricles during continuous positive airway pressure breathing. J Appl Physiol 56: 619–627

    PubMed  CAS  Google Scholar 

  36. Jensen U (1985) Die Wirkung vasoaktiver Pharmaka auf die Mikrozirkulation. Untersuchungen am wachen Hamster. Habilitationsschrift, Ludwig Maximilians-Universität München

    Google Scholar 

  37. Kessler M, Grunewald W (1969) Possibilities of measuring oxygen pressure fields in tissue by multiwire platinum electrodes. Prog Resp Res 3: 147–152

    Google Scholar 

  38. Kumar A, Falke KJ, Geffin B, Aldregde CF, Laver MB, Lowenstein E, Pontoppidan H (1970) Continuous positive-pressure ventilation in acute respiratory failure: effects on hemodynamics and lung function. N Engl J Med 283: 1430–1436

    Article  PubMed  CAS  Google Scholar 

  39. Kumar A, Pontoppidan H, Baratz RA, Laver MB (1974) Inappropriate response to increased plasma ADH during mechanical ventilation in acute respiratory failure. Anesthesiology 40: 215–221

    Article  PubMed  CAS  Google Scholar 

  40. Lachmann B, Jonson B, Lindroth M, Robertson B (1982) Modes of artificial ventilation in severe respiratory distress syndrome, lung function and morphology in rabbits after wash-out of alveolar surfactant. Crit Care Med 10: 724–732

    Article  PubMed  CAS  Google Scholar 

  41. Laver MB, Strauss HW (1979) Right and left ventricular geometry: adjustments during acute respiratory failure. Crit Care Med 7: 509–519

    Article  PubMed  CAS  Google Scholar 

  42. Laver MB, Pohost GM, Strauss HW (1980) Hemodynamic adjustments in acute respiratory failure: The role of the right ventricle. In: Peter K (Hrsg) Akute respiratorische Insuffizienz. Anästhesiologie und Intensivmedizin, Bd 131. Springer, Berlin Heidelberg New York, S104–121

    Google Scholar 

  43. Lee JM, Boughner DR (1985) Mechanical properties of human pericardium: Differences in viscoelastic response when compared with canine pericardium. Circ Res 55: 475–481

    Google Scholar 

  44. Liebman PR, Patten MT, Manny J, Shepro D, Hechtman HB (1978) The mechanism of depressed cardiac output on positive end-expiratory pressure (PEEP). Surgery 83: 594–598

    PubMed  CAS  Google Scholar 

  45. Lübbers D (1969) Principle of construction and application of various platinum electrodes. Prog Resp Res 3: 136–146

    Google Scholar 

  46. Lutch JS, Murray JF (1972) Continuous positive-pressure ventilation: effects on systemic oxygen transport and tissue oxygenation. Ann Intern Med 76: 193–202

    PubMed  CAS  Google Scholar 

  47. Manny J, Patten MT, Liebman PR, Hechtman HB (1978) The association of lung distension, PEEP and biventricular failure. Ann Surg 18: 151–157

    Article  Google Scholar 

  48. Marini JJ, Culver BH, Butler J (1981) Effect of positive end-expiratory pressure on canine ventricular function curves. J Appl Physiol 51: 1367–1374

    PubMed  CAS  Google Scholar 

  49. Mirsky I, Rankin JS (1979) The effects of geometry, elasticity and external pressures on the diastolic pressure-volume and stiffness-stress-relations. How important is the pericardium? Circ Res 44: 601–611

    PubMed  CAS  Google Scholar 

  50. Molaug M, Stokland O, Ilebekk A, Lekven J, Kiil F (1981) Myocardial function of the interventricular septum: Effects of right and left ventricular pressure loading before and after pericardiotomy in dogs. Circ Res 49: 52–61

    PubMed  CAS  Google Scholar 

  51. Oboler AA, Keefe JF, Gaasch WH, Banas JS, Levine HJ (1973) Influence of left ventricular isovolumic pressure upon right ventricular pressure transients. Cardiology 58: 32–44

    Article  PubMed  CAS  Google Scholar 

  52. Pontoppidan H, Wilson R, Rie MA, Schneider RC (1977) Respiratory intensive care. Anesthesiology 47: 96–116

    Article  PubMed  CAS  Google Scholar 

  53. Powers SR, Dutton RE (1975) Correlation of positive end-expiratory pressure with cardiovascular performance. Crit Care Med 3: 64–68

    Article  PubMed  Google Scholar 

  54. Prewitt RM, Wood LDH (1979) Effect of positive end-expiratory pressure on ventricular function in dogs. Am J Physiol 236: H534-H544

    PubMed  CAS  Google Scholar 

  55. Qvist J, Pontoppidan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic responses to mechanical ventilation with PEEP. Anesthesiology 42: 45–55

    Article  PubMed  CAS  Google Scholar 

  56. Robotham JL, Mitzner W (1979) A model of the effects of respiration on left ventricular performance. J Appl Physiol 46 (3): 411–418

    PubMed  CAS  Google Scholar 

  57. Robotham JL, Lixfeld W, Holland L, Maregor D, Bryan AC, Rabson J (1978) Effects of respiration on cardiac performance. J Appl Physiol 44 (5): 703–709

    PubMed  CAS  Google Scholar 

  58. Sibbald WJ, Driedger AA, Myers ML, Short Al, Wells GA (1983) Biventricular function in the adult respiratory distress syndrome. Hemodynamic and radionuclide assessment, with special emphasis on right ventricular function. Chest 84 (2): 126–134

    Article  PubMed  CAS  Google Scholar 

  59. Suter PM, Fairley HB, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292: 284–289

    Article  PubMed  CAS  Google Scholar 

  60. Tanaka H, Tei C, Nakao S, Tahara M, Sakurai S, Kashima T, Kanehisa T (1980) Diastolic bulging of the interventricular septum toward the left ventricle. An echocardiographic manifestation of negative interventricular pressure gradient between left and right ventricles during diastole. Circulation 62: 558–563

    PubMed  CAS  Google Scholar 

  61. Tyler DC (1983) Positive end-expiratory pressure: A review. Crit Care Med 11: 300–308

    Article  CAS  Google Scholar 

  62. Venus B, Mathru M, Smith RA, Pham CCG, Shirakawa Y, Sugiura A (1985) Renal function during application of positive end-expiratory pressure in swine: Effects of hydration. Anesthesiology 62: 765–769

    Article  PubMed  CAS  Google Scholar 

  63. Viquerat CE, Rishetti A, Suter PM (1983) Biventricular volumes and function in patients with adult respiratory distress syndrome ventilated with PEEP. Chest 83 (3): 509–514

    Article  PubMed  CAS  Google Scholar 

  64. Visner MS, Arentzen CE, O Connor MJ, Larson EV, Anderson RW (1983) Alterations in left ventricular three-dimensional dynamic geometry and systolic function during acute right ventricular hypertension in the conscious dog. Circulation 67: 353–365

    Article  PubMed  CAS  Google Scholar 

  65. Zapol WM, Snider MT (1977) Pulmonary hypertension in severe acute respiratory failure. N Engl J Med 296: 476–480

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jensen, U., Forst, H. (1987). Beatmung und Hämodynamik. In: Lawin, P. (eds) Aktuelle Aspekte und Trends der respiratorischen Therapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71300-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71300-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16651-1

  • Online ISBN: 978-3-642-71300-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics