Automatische Identifizierung und biochemische Charakterisierung menschlicher Tumorzellen mit Hilfe der Durchflußcytometrie

  • G. Valet
  • H. Kahle
  • R. Wirsching
  • F. Liewald
  • N. Demmel
  • Ch. Rübe
  • H. H. Warnecke
Conference paper

Zusammenfassung

Durchflußcytometrische Messungen liefern mit großer Schnelligkeit ein hohes Maß an Information über Einzelzellen. Die Vorteile der mikroskopischen Einzelzellbeobachtung werden dabei mit denen der molekularen biochemischen Analytik verbunden. Zahlreiche neue Methoden wurden in den vergangenen Jahren entwik- kelt. So können Bestandseigenschaften wie DNS, RNS, Antigene, Hormon- und Lektinrezeptoren, Protein und Lipide gemessen werden [1–9]. Bei lebenden Zellen können zusätzlich Funktionseigenschaften wie Enzymaktivitäten, intrazellulärer pH-Wert, Calciumspiegel, Transmembran- und Mitochondrienmembranpotential, Glutathionspiegel, freie Protein-SH Gruppen, freie Radikale oder die elektrische Oberflächenladungsdichte bestimmt werden [10–20].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Latt S (1979) Fluorescent probes of DNA microstructure and synthesis, in: Melamed MR, Mullaney PF, Mendelsohn ML (eds) Flow Cytometry and Sorting. Wiley, New York, pp 263–284Google Scholar
  2. 2.
    Darzynkiewicz Z (1979) Acridine orange as a molecular probe in studies of nucleic acids in situ, in: Melamed MR, Mullaney PF, Mendelsohn ML (eds) Flow Cytometry and Sorting, John Wiley & Sons, New York, p 285–316Google Scholar
  3. 3.
    Valet G, Russmann L, Wirsching R (1984) Automated flow-cytometric identification of colorectal tumor cells by simultaneous DNA, CEA-antigen and cell volume measurements. J Clin Chem Clin Biochem 22: 935–942PubMedGoogle Scholar
  4. 4.
    Wirsching R, Valet G, Wiebecke R (1985) Klassifikation und Prognose kolorektaler Karzinome. Fortschr Med 103: 584–587PubMedGoogle Scholar
  5. 5.
    Valet G, Ormerod M, Warnecke HH, Benker G (1981) Sensitive three-parameter flow-cytomet- ric detection of abnormal cells in human cervical cancers: a pilot study. J Cane Res Clin Oncol 102: 177–184CrossRefGoogle Scholar
  6. 6.
    Scheiffarth OF, Valet G, Dvorak R, Baur S, Kachel V, Zander J, Ruhenstroth-Bauer G (1979) Flow cytometric characterisation of tumor associated changes in gynecologic malignancies, in: Peeters H (ed) Separation of Cells and Subcellular Elements, Pergamon Press, Oxford, p 11–16Google Scholar
  7. 7.
    Benz Ch, Wisnitzer I, Hang Lee S (1985) Flow cytometric analysis of fluorescein conjugated estradiol ( E-BSA-FITC) binding in breast cancer patients. Cytometry 6: 260–267Google Scholar
  8. 8.
    Malin Berdel J, Valet G, Thiel E, Forrester JA, Gürtler LG (1984) Surface density of lectin receptors on human T and B cells and on human T and B cell lines determined by flow cytometry. Cytometry 5: 204–209PubMedCrossRefGoogle Scholar
  9. 9.
    Siegert W, Mönch T, Valet G (1980) Epstein-Barr virus ( EBV) induced increase in the Concana- valin-A receptor density of established EBV-negative lymphoma lines in vitro. Exp Hemat 8: 1173Google Scholar
  10. 10.
    Malin-Berdel J, Valet G (1980) Flow cytometric determination of esterase and phosphatase activities and kinetics in hematopoietic cells with fluorogenic substrates. Cytometry 1: 222–228PubMedCrossRefGoogle Scholar
  11. 11.
    Valet G, Raffael A (1984) Determination of intracellular pH and esterase activity in vital cells by flow-cytometry, Eigenverlag Paesel, Frankfurt, p 1–21Google Scholar
  12. 12.
    Valet G, Raffael A, Moroder L, Wünsch E, Ruhenstroth-Bauer G (1981) Fast intracellular pH determination in single cells by flow-cytometry. Naturwiss 68: 265–266PubMedCrossRefGoogle Scholar
  13. 13.
    Valet G, Raffael A (1985) Determination of intracellular calcium in vital cells by flow-cytometry. Naturwiss 72: 600–602PubMedCrossRefGoogle Scholar
  14. 14.
    Shapiro HM, Natale PJ, Kamentsky LA (1979) Estimation of membrane potentials of individual lymphocytes by flow cytometry. Proc Natl Acad Sci USA 76: 5728–5730PubMedCrossRefGoogle Scholar
  15. 15.
    Davis S, Weiss MJ, Wong JR, Lampidis ThJ, Bo Chen L (1985) Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem 260: 13844–13850PubMedGoogle Scholar
  16. 16.
    Lampidis ThJ, Hasin Y, Weiss MJ, Bo Chen L (1985) Selective killing of carcinoma cells in vitro by lipophilic-cationic compounds: a cellular basis. Biomed Pharmacotherap 39: 220–226Google Scholar
  17. 17.
    Treumer J, Valet G (1986) Flow-cytometric determination of glutathione alterations in vital cells by o-phthaldialdehyde ( OPT) staining. Exp Cell Res 163: 518–524PubMedCrossRefGoogle Scholar
  18. 18.
    Burow S (1985) Durchflußcytometrische Enzymaktivitätsmessungen bei phagozytierenden Zellen. Diplomarbeit, Fachbereich Biologie, Ludwig-Maximilian-Universität, MünchenGoogle Scholar
  19. 19.
    Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative product formation by neutrophils: A gradient response to membrane stimulation. J Imm 130: 1910–1917Google Scholar
  20. 20.
    Valet G, Bamberger S, Ruhenstroth-Bauer G (1979) Flow cytometric determination of the surface charge density of the erythrocyte membrane using fluorescinated polycations. J Histochem Cytochem 27: 342–349PubMedCrossRefGoogle Scholar
  21. 21.
    Hedley DW, Friedlander ML, Taylor IW, Rugg C, Musgrove EA (1983) Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow-cytometry. J Histochem Cytochem 31: 1333–1335PubMedCrossRefGoogle Scholar
  22. 22.
    Kachel V, Glossner E, Kordwig E, Ruhenstroth-Bauer G (1977) FLUVO-METRICELL, a combined cell volume and fluorescence analyzer. J Histochem Cytochem 25: 804–812PubMedCrossRefGoogle Scholar
  23. 23.
    Kachel V, Schneider H, Bauer J, Malin-Berdel J (1983) Application of the CYTOMIC12 flow- cytometric analyzer for automatic kinetic measurements. Cytometry 3: 244–250PubMedCrossRefGoogle Scholar
  24. 24.
    Kachel V, Schneider H, Schedler K, Haack L (1984) CYTOMIC data system modules, modern electronic devices for flow cytometric data handling and display. Cytometry 5: 299–303PubMedCrossRefGoogle Scholar
  25. 25.
    Kachel V, Schneider H (1986) On-line three parameter data uptake analysis and display module for flow-cytometry. Cytometry 7: 35–40Google Scholar
  26. 26.
    Valet G (1980) Graphical respresentation of three parameter flow cytometer histograms by a newly developed FORTRAN IV computer program, in: Flow Cytometry IV, Universitetsfor- laget, Bergen, p 125–129Google Scholar
  27. 27.
    Valet G, Fischer B, Sundergeld A, Hanser G, Kachel V, Ruhenstroth-Bauer G (1979) Simultaneous flow cytometric DNA and volume measurement of bone marrow cells as sensitive indicator of abnormal proliferation patterns in rat leukemias. J Histochem Cytochem 27: 398–402PubMedCrossRefGoogle Scholar
  28. 28.
    Valet G, Hofmann H, Ruhenstroth-Bauer G (1976) The computer analysis of volume distribution curves: Demonstration of two erythrocyte populations of different size in the young guinea pig, and analysis of the mechanism of immune lysis of cells by antibody and complement. J Histochem Cytochem 24: 231–246Google Scholar
  29. 29.
    Barlogie B, Raber MM, Schumann J, Johnson TS, Drevinko B, Swartzendruber DE, Gohde W, Andreeff M, Freireich EJ (1983) Flow cytometry in clinical cancer research. Cancer Res 43: 3982–3997PubMedGoogle Scholar
  30. 30.
    Volm M, Mattern J, Sonka J, Vogt-Schaden M, Wayss K (1985) DNA distribution in non small- cell lung carcinomas and its relationship to clinical behaviour. Cytometry 6: 348–356PubMedCrossRefGoogle Scholar
  31. 31.
    Barrett DL, Jensen RH, King EB, Dean PhN, Mayall BH (1979) Flow cytometry of human gynecologic specimens using log chromomycin A3 fluorescence and log 90° light scatter. J Histochem Cytochem 27: 573–578PubMedCrossRefGoogle Scholar
  32. 32.
    Habbersett MC, Shapiro M, Bunnag B, Nishiya I, Herman Ch (1979) Quantitative analysis of flow microfluorimetric data for screening of gynecologic cytology specimens. J Histochem Cytochem 27: 536–544PubMedCrossRefGoogle Scholar
  33. 33.
    Oud PS, Henderik JBJ, Beck HLM, Veldhuizen JAM, Vooijs GP, Herman ChJ, Ramaekers FCS (1985) Flow cytometric analysis and sorting of human endometrial cells after immunocyto- chemical labeling for cytokeratin using a monoclonal antibody. Cytometry 6: 159–164PubMedCrossRefGoogle Scholar
  34. 34.
    Watson JV, Stewart J, Evan GI, Ritson A, Sikora K (1986) The clinical significance of flow cytometric c-myc oncoprotein quantitation in testicular cancer. Br J Cancer 53: 331–337PubMedCrossRefGoogle Scholar
  35. 35.
    Watson JV, Sikora K, Evan GI (1985) A simultaneous flow cytometric assay for c-myc oncoprotein and DNS in nuclei from paraffin embedded material. J Imm Meth 83: 179–192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • G. Valet
  • H. Kahle
  • R. Wirsching
  • F. Liewald
  • N. Demmel
  • Ch. Rübe
  • H. H. Warnecke

There are no affiliations available

Personalised recommendations