Advertisement

ZAK Zürich pp 297-304 | Cite as

Glucose ou épargne protéique dans la période postopératoire

  • D. Thorin
  • D. Schwander
Conference paper
  • 16 Downloads
Part of the Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine book series (A+I, volume 189)

Zusammenfassung

Le jeûne place l’organisme dans une situation de déséquilibre en le contraignant à utiliser des substrats énergétiques endogènes plutôt qu’exogènes. Ces mécanismes adaptatifs, sans doute vitaux pour l’espèce, visent d’une part à maintenir l’homéostase du glucose indispensable à court terme à la survie de certains systèmes, et d’autre part, à long terme, à gérer l’épargne des protéines de structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Addae SK, Lotspeich WD (1968) Relation between glutamine utilization and metabolic acidosis. Am J Physiol 215:269–277PubMedGoogle Scholar
  2. 2.
    Ang SD, Leskiw M J, Stein TP (1983) The effect of increasing total parenteral nutrition on protein metabolism. JPEN 7:525–529CrossRefGoogle Scholar
  3. 3.
    Askanazi J, Carpentier Y A, Elwyn DH et al (1980) Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 191:40–46PubMedCrossRefGoogle Scholar
  4. 4.
    Askanazi J, Rosenbaum SH, Hyman AI (1980) Respiratory changes induced by the large glucose loads of total parenteral nutrition. JAMA 243:1444–1447PubMedCrossRefGoogle Scholar
  5. 5.
    Baiasse EO, Neef MA (1974) Operation of the “glucose-fatty acid cycle” during experimental elevations of plasma free fatty acid levels in man. Eur J Clin Invest 4:247–252Google Scholar
  6. 6.
    Baracos V, Rodemann HP, Dinarello CA, Goldbery AL (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leucocytic pyrogen (interleukin-1). N Engl J Med 308:553–558PubMedCrossRefGoogle Scholar
  7. 7.
    Cahill GF (1970) Starvation in man. N Engl J Med 282:668–675PubMedCrossRefGoogle Scholar
  8. 8.
    Cerra FB, Upson BA, Angelico BA, Wiles III C, Lyons RN, Faulkenbach RN, Paysinger J (1982) Branched chains support post-operative protein synthesis. Surgery 92:192–199PubMedGoogle Scholar
  9. 9.
    Chang TN, Goldbery AL (1978) The origin of alanine produced in skeletal muscle. J Biol Chem 253:3677–3684PubMedGoogle Scholar
  10. 10.
    Chiasson JL, Atkinson RL, Cherrington AD, Keller U, Sinclair-Smith BC, Liljenquist JE (1979) Effects of fasting on gluconeogenesis from alanine in nondiabetic man. Diabetes 28:56–60PubMedGoogle Scholar
  11. 11.
    Clowes GHA, George BC, Villes CA, Saravis CA (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308:545–552PubMedCrossRefGoogle Scholar
  12. 12.
    Crane CW, Picou D, Smith R, Waterlow JC (1977) Protein turnover in patients before and after elective orthopedic operation. Br J Surg 64:129–133.PubMedCrossRefGoogle Scholar
  13. 13.
    De Dronzo RA (1983) Regulation of glucose, lipid, and amino acid metabolism in normal healthy subjects. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition. Karger, Basel, pp 169–210Google Scholar
  14. 14.
    Duke JH, Jorgensen SB, Broell JR, Long CL, Kinney JM (1970) Contribution of protein to caloric expenditure following injury. Surgery 68:168–174PubMedGoogle Scholar
  15. 15.
    Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955.PubMedCrossRefGoogle Scholar
  16. 16.
    Felig P, Wahren J, Hendler R (1975) Influence of oral glucose ingestion on splanchnic glucose and gluconeogenic substrate metabolism in man. Diabetes 24:468–475.PubMedCrossRefGoogle Scholar
  17. 17.
    Foster DW, McGarry JD (1983) Endocrine and metabolic adaptation to starvation. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition. Karger, Basel, pp 240–246.Google Scholar
  18. 18.
    Harris JA, Benedict FG (1919) A biometric study of basal metabolism in man. Carnegie Institute of Washington, Washington (Publication No 279)Google Scholar
  19. 19.
    Jeejeebhoy KN (1981) Protein nutrition in clinical practice. Br Med Bull 37:11–17.PubMedGoogle Scholar
  20. 20.
    Kinney JM (1980) The application of indirect calorimetry to clinical studies. In: Kinney JM (ed) Assessment of energy metabolism in health and diasese. Ross Laboratories, Columbus, pp 42–48.Google Scholar
  21. 21.
    Klidjian AM (1982) Detection of dangerous malnutrition. JPEN 6:119–121.CrossRefGoogle Scholar
  22. 22.
    MacFadyen BV, Dudrick SJ, Baqueros G (1979) Clinical and biological changes in liver function during intravenous hyperalimentation. JPEN 3:438–443.CrossRefGoogle Scholar
  23. 23.
    Meguid MM, Brennan MF, Aoki TT (1974) Hormone–substrate interrelationships following trauma. Arch Surg 109:776–783.PubMedGoogle Scholar
  24. 24.
    Munro HN (1980) Energy intake and nitrogen metabolism. Ross Laboratories, Columbus (Ross Conferences on Medical Research, No 43216)Google Scholar
  25. 25.
    Nilsson L, Hultman E (1974) Liver and muscle glycogen in man after glucose and fructose infusion. Scand J Clin Lab Invest 33:5–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Novarini A, Borhi L, Corti A et al (1983) Extracellular water, electrolyte and nitrogen balance after post-operative parenteral nutrition and intracellular involment in muscle. Acta Chir Scand 149: 651–656PubMedGoogle Scholar
  27. 27.
    Owen EE, Robinson RR (1963) Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest 42:263–276PubMedCrossRefGoogle Scholar
  28. 28.
    Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF (1969) Liver and kidney metabolism during prolonged starvation. J Clin Invest 48:574–583PubMedCrossRefGoogle Scholar
  29. 29.
    Rändle PJ, Newsholme EA, Garland PB (1964) Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation on the uptake and metabolic fate of glucose in rat heart and diaphram muscles. Biochem J 93:652–665PubMedGoogle Scholar
  30. 30.
    Stoner HB (1977) Hypothalamic involvement in the response to injury. In: Richards JR, Kinney M (eds) Nutritional aspects of care in the critically ill. Churchill Livingstone, New York, pp 257–271Google Scholar
  31. 31.
    Struck E, Ashmore J, Wieland O (1965) Stimulierung der Gluconeogenese durch langkettige Fettsäuren und Glucagon. Biochem Z 343:107–110PubMedGoogle Scholar
  32. 32.
    Struck E, Ashmore J, Wieland O (1966) Effects of glucagon and long chain fatty acids on glucose production by isolated perfused rat liver. Adv Enzyme Regul 4:219–224PubMedCrossRefGoogle Scholar
  33. 33.
    Vinnars E, Bergström J, Fürst P (1975) Influence of the postoperative state on the intracellular free amino acids in human muscle tissue. Ann Surg 182:665–671PubMedCrossRefGoogle Scholar
  34. 34.
    Wilmore DW (1976) Hormonal responses and their effect on metabolism. Surg Clin North Am 56: 999–1018PubMedGoogle Scholar
  35. 35.
    Wilmore DW (1977) The metabolic management of the critically ill. Plenum, New YorkGoogle Scholar
  36. 36.
    Wilmore DW, Aulick LH (1980) Systemic response to injury and the healing wound. JPEN 4:147–150CrossRefGoogle Scholar
  37. 37.
    Wilmore DW, Aulick LH, Masson AD, Pruit BA (1977) Influence of the burn wound on local and systemic response to injury. Ann Surg 186:444–458PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • D. Thorin
  • D. Schwander

There are no affiliations available

Personalised recommendations