ZAK Zürich pp 258-267 | Cite as

Wirkungen der Allgemeinanästhetika am ZNS

  • J. O. Arndt
Conference paper
Part of the Anaesthesiologie und Intensivmedizin / Anaesthesiology and Intensive Care Medicine book series (A+I, volume 188)

Zusammenfassung

Allgemeinanästhetika lösen bekanntlich reversible Bewußtlosigkeit und bei genügend hoher Konzentration am ZNS auch Reaktionslosigkeit gegenüber stärksten Schmerzreizen aus. Diesen als reversibles Koma definierbaren Zustand bezeichnet man gemeinhin als Narkose. Wie Narkose allerdings zustande kommt, ihr Mechanismus also, ist nach wie vor rätselhaft. Einerseits ist unbekannt, wie chemisch inerte Stoffe ohne definierte Struktur-Effekt-Beziehung, für die Rezeptoren als Wirkungsvermittler wohl nicht existieren, überhaupt wirken. Andererseits ist ungeklärt, warum Pharmaka, die die Zellfunktion generell hemmen, in so augenfälliger Weise über eine primäre Funktionsstörung des ZNS die Narkose auslösen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Arndt, JO, Mikat M, Parasher C (1984) Fentanyl’s analgesic, respiratory and cardiovascular actions in relation to dose and plasma concentration in unanesthetized dogs. Anesthesiology (355–361)Google Scholar
  2. 2.
    Cheney DL, Ngai SH (1980) Effects of anesthetics and related drugs on the acetylcholine turnover rate in various structures of the rat brain. In: Fink BR (ed) Molecular mechanisms of anaesthesia. Raven, New York (Progress in anesthesiology, vol 2, pp 189–198)Google Scholar
  3. 3.
    Cheng SC, Brunner EA (1980) Is anesthesia caused by excess GABA? In: Fink BR (ed) Molecular mechanisms of anesthesia. Raven, New York (Progress in anesthesiology, vol 2, S 137–144)Google Scholar
  4. 4.
    Das BB (1975) Minimum blood concentration — a universal concept of anaesthetic potency. Br J Anaesth 47:881–884PubMedCrossRefGoogle Scholar
  5. 5.
    DiFazio CA, Brown RE, Ball CG, Heckel CG, Kennedy SS (1972) Additive effects of anesthetics and theories of anesthesia. Anesthesiology 36:57–63PubMedCrossRefGoogle Scholar
  6. 6.
    Hanin I (1978) Anesthetics and central cholinergic function — a perspective. Anesthesiology 48:1–3PubMedCrossRefGoogle Scholar
  7. 7.
    Henderson VE (1930) The present status of the theories of narcosis. Physiol Rev 10:171–220Google Scholar
  8. 8.
    Hill GE, Stanley TH, Sentker CR (1977) Physostigmine reversal of postoperative somnolence. Can Anaesth Soc J 24:707–711PubMedCrossRefGoogle Scholar
  9. 9.
    Ho IK, Harris RA (1981) Mechanism of action of barbiturates. Ann Rev Pharmacol Toxicol 21:83–111CrossRefGoogle Scholar
  10. 10.
    Horrigan RW (1978) Physostigmine and anesthetic requirement for halothane in dogs. Anesth Analg 57:180–185PubMedGoogle Scholar
  11. 11.
    Kaufman RD (1977) Biophysical mechanisms of anesthetic action: Historical perspective and review of current concepts. Anesthesiology 46:49–62PubMedCrossRefGoogle Scholar
  12. 12.
    Larrabee MG, Posternak JM (1952) Selective action of anesthetics on synapses and oxans in mammalian sympathetic ganglia. J Neurophysiol 15:91–114PubMedGoogle Scholar
  13. 13.
    Meyer HH (1927) Die Narkose und ihre allgemeine Theorie. In: Bethe A, Bergmann G, Embden G, Ellinger A (Hrsg) Handbuch der Normalen und Pathologischen Physiologie, Bd 1. Springer, Berlin, S 531–549CrossRefGoogle Scholar
  14. 14.
    Meyer HH (1937) Contributions to the theory of narcosis. Trans Faraday Soc 33:1062–1068CrossRefGoogle Scholar
  15. 15.
    Miller KW (1975) The pressure reversal of anesthesia and the critical volume hypothesis. In: Fink BR (ed) Raven, New York (Progress in anesthesiology, vol 1, pp 341–351)Google Scholar
  16. 16.
    Moruzzi G (1972) The sleep-waking cycle. Rev Physiol Biochem Pharmacol 64:1–165Google Scholar
  17. 17.
    Mullins LJ (1971) Anesthetics. In: Lajtha A (ed) Handbook of neurochemistry, vol 6. Plenum, New York, pp 395–421Google Scholar
  18. 18.
    Nicoli RA, Iwamoto ET (1978) Action of pentobarbital on sympathetic ganglion cells. J Neurophysiol 41:977–986Google Scholar
  19. 19.
    Ngai SH, Cheney DL, Finck AD (1978) Acetylcholine concentrations and turnover in rat brain structures during anesthesia with halothane, enflurane and ketamine. Anesthesiology 48:4–10PubMedCrossRefGoogle Scholar
  20. 20.
    Overton E (1901) Studien über die Narkose. Fischer, JenaGoogle Scholar
  21. 21.
    Richards CD (1980) The mechanisms of general anaesthesia. In: Norman J, Whitwam JG (eds) Anaesthesia, vol 1. Wright, BristolGoogle Scholar
  22. 22.
    Richards CD (1983) Actions of general anaesthetics on synaptic transmission in the CNS. Br J Anaesth 55:201–207PubMedCrossRefGoogle Scholar
  23. 23.
    Roth SH (1979) Physical mechanisms of anesthesia. Ann Rev Pharmacol Toxicol 19:159–178CrossRefGoogle Scholar
  24. 24.
    Schmidt KF (1966) Effect of halothane anesthesia on regional acetylcholine levels in the rat brain. Anesthesiology 27:788–792PubMedCrossRefGoogle Scholar
  25. 25.
    Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655PubMedGoogle Scholar
  26. 26.
    Shute CCD, Lewis PR (1967) The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections. Brain 90:497–520PubMedCrossRefGoogle Scholar
  27. 27.
    Siepmann HP (1979) Zur Herzwirkung von Inhalationsanaesthetica. Springer, Berlin Heidelberg New York (Anaesthesiology und Intensivmedizin, Bd 121)CrossRefGoogle Scholar
  28. 28.
    Snyder S (1978) Opiate receptors and internal opiates. Sci Am 236Google Scholar
  29. 29.
    Sowton SCM, Sherrington CS (1905) Report on chloroform. Br Med JGoogle Scholar
  30. 30.
    Stong LJ, Hartzeil CR, McCare RL (1975) Effects of halothane on the beating response and ATP turnover rate of heart cells in tissue culture. Anesthesiology 42:123–132PubMedCrossRefGoogle Scholar
  31. 31.
    Tanifugi Y, Eger EJ, Terrell RC (1977) Some characteristics of an exceptionally potent inhaled anesthetic: Thiomethoxyflurane. Anesth Analg 56:387–392Google Scholar
  32. 32.
    Trabucchi M, Cheney DL, Recagni G, Costa E (1975) Pentobarbital and in vivo turnover rate of acetylcholine in mouse brain and in regions of rat brain. Pharmacol Res Commun 7:81–94CrossRefGoogle Scholar
  33. 33.
    Winterstein H (1926) Die Narkose in ihrer Bedeutung für die allgemeine Physiologie. Springer, Berlin (Monographien aus dem Gesamtgebiet der Physiologie der Pflanzen und der Tiere, Bd 2)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. O. Arndt

There are no affiliations available

Personalised recommendations