Skip to main content

New Electron Microscopic Data on the Structure of the Nucleoid and Their Functional Consequences

  • Conference paper
Bacterial Chromatin

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The DNA of the bacterial genome is organised quite differently from that of eukaryotic cells: Since only one linkage group exists, the “genome” of the bacterium is considered to be a single chromosome. A simple mechanism of division would allow an equipartition of the bacterial genome, in contrast to organisms with multiple chromosomes, where the chromosomes, condensed in metaphase, are presumably separated by the mitotic spindle fibers. In the condensed, compact form, the DNA is neither replicating nor transcriptionally active. In prokaryotes, replication and transcription are continuous when the cells are under optimal growth conditions (see Ingraham et al. 1983). Furthermore, Miller et al. (1970) showed that initiation of translation occurs as soon as a piece of the messenger RNA becomes available on the transcribing DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson ES, Armstrong JA, Niven SF (1959) Fluorescence microscopy: observation of virus growth with aminoacridines. In: Virus growth and variation. University Press Cambridge, pp 224–255

    Google Scholar 

  • Baschong W, Baschong-Prescianotto C, Wurtz M, Carlemalm E, Kellenberger C, Kellenberger E (1984) Preservation of protein structures for electron microscopy by fixation with aldehydes and/or OsO4. Eur J Cell Biol 35:21–26

    CAS  Google Scholar 

  • Burg Jl, Schweitzer J, Danniell E (1983) Introduction of superhelical turns into DNA by adenoviral core proteins and chromatin assembly factors. J Virol 46:749–755

    PubMed  CAS  Google Scholar 

  • Carlemalm E, Garavito RM, Villiger W (1982) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc (Oxf) 126:123–143

    Article  CAS  Google Scholar 

  • Chang C-F, Shuman H, Somlyo AP (1984) Electron probe analysis, X-ray mapping and electron energy loss spectroscopy of elemental distribution of E. coli B. In: Bailey GW (ed) Proc 42th Annu Meet Electron Microsc Soc Am. San Francisco Press, San Francisco, pp 570–571

    Google Scholar 

  • Daneo-Moore L, Higgins ML (1972) Morphokinetic reaction of Streptococcus faecalis (ATOC 9790) cells to the specific inhibition of macromolecular synthesis: nucleoid condensation on the inhibition of protein synthesis. J Bacteriol 109:1210–1220

    PubMed  CAS  Google Scholar 

  • Dixon N, Kornberg A (1984) Protein HU in the enzymatic replication of the chromosomal origin of Escherichia coll Proc Natl Acad Sci USA 81:424–428

    Article  PubMed  CAS  Google Scholar 

  • Dubochet J, McDowall AW, Menge B, Schmid EN, Lickfeld KG (1983) Electron microscopy of frozen-hydrated bacteria. J Bacteriol 155:381–390

    PubMed  CAS  Google Scholar 

  • Earnshaw WC, King J, Eiserling FA (1978) The size of the bacteriophage T4 head in solution with comments about the dimension of virus particles as visualized by electron microscopy. J Mol Biol 122:247–253

    Article  PubMed  CAS  Google Scholar 

  • Ebersold HR, Cordier JL, Lüthy P (1981) Bacterial mesosomes: method dependent artifacts. Arch Microbiol 130:19–22

    Article  PubMed  CAS  Google Scholar 

  • Eickbush TH, Moudrianakis EN (1978) The compaction of DNA helices into either continuous supercoils or folded fiber rods and toroids. Cell 13:295–301

    Article  PubMed  CAS  Google Scholar 

  • Eilat D, Hochberg M, Pumphrey J, Rudikoff S (1984) Monoclonal antibodies to DNA and RNA from NZB/NZW F, mice: antigenic specificities and NH2 terminal amino acid sequences. J Immunol 133:489–494

    PubMed  CAS  Google Scholar 

  • Epstein W, Schultz SG (1965) Cation transport in Escherichia coli V. Regulation of cation content. J Gen Physiol 49:221–234

    Article  PubMed  CAS  Google Scholar 

  • Escaig J (1982) New instruments which facilitate rapid freezing at 83K and 6K. J Microsc (Oxf) 126:221–229

    Article  Google Scholar 

  • Gautier A (1976) Ultrastructural localisation of DNA in ultrathin tissue sections. Int Rev Cytol 44: 113–191

    Article  PubMed  CAS  Google Scholar 

  • Geider K, Hoffmann-Berling H (1981) Proteins controlling the helical structure of DNA. Annu Rev Biochem 50:233–260

    Article  PubMed  CAS  Google Scholar 

  • Geliert M (1981) DNA topoisomerases. Annu Rev Biochem 50:879–910

    Article  Google Scholar 

  • Gosule LC, Schellman IA (1976) Compact form of DNA induced by spermidine. Nature 259:333–335

    Article  PubMed  CAS  Google Scholar 

  • Griffith JD (1976) Visualization of prokaryotic DNA in a regularly condensed chromatin-like fiber. Proc Natl Acad Sci USA 73:563–567

    Article  PubMed  CAS  Google Scholar 

  • Günther T, Dorn F (1969) Über die intrazelluläre Mg-Ioneninaktivität von E. coli Zellen. Z Naturforsch Sect B 24:713–717

    Google Scholar 

  • Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Article  PubMed  CAS  Google Scholar 

  • Hobot JA, Villiger W, Escaig J, Maeder M, Ryter A, Kellenberger E (1985) The shape and fine structure of the nucleoid observed on sections of ultra-rapid frozen and cryosubstituted bacteria. J Bacteriol 162:960–971

    PubMed  CAS  Google Scholar 

  • Imber R, Bächinger H, Bickle TA (1982) Purification and characterization of a small DNA-binding protein, HB, from Bacillus globigii. Eur J Biochem 122:627–632

    Article  PubMed  CAS  Google Scholar 

  • Ingraham JL, Maaloe O, Neidhardt B (1983) Growth of the bacterial cell. Sinauer, Sunderland, Mass

    Google Scholar 

  • Kellenberger E (1953) Les formes caracteristiques des nucleoides de E. coli et leurs transformations dues a l’action d’agent mutagenes-inducteurs et de bacteriophages. In: Symp Citologia Batterica, Supplemento Rendiconti Ist. Superiore di Sanita, Roma, pp 45–66. Also: thesis Geneva, University Microfilms Int. P.O Box 1346, Ann Arbor, MI 48106, USA Cust. Ref: 84–03,992

    Google Scholar 

  • Kellenberger E (1962) The study of natural and artificial DNA-plasms by thin sections. In: The interpretation of ultrastructure, vol 1. Symp Soc Cell Biol, Berne, pp 233–249

    Google Scholar 

  • Kellenberger E, Bitterli D (1976) Preparation and counts of particles in electron microscopy:

    Google Scholar 

  • Application of negative stain in the agarfiltration method. Microsc Acta 78:131–148

    Google Scholar 

  • Kellenberger E, Ryter A (1964) In bacteriology. In: Siegel BM (ed) Modern developments in electron microscopy. Academic Press, New York, pp 335–393

    Google Scholar 

  • Kellenberger E, Ryter A, Séchaud J (1958) Electron microscopy study of DNA-containing plasms II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4:671–678

    Article  PubMed  CAS  Google Scholar 

  • Kellenberger E, Carlemalm E, Stauffer E, Kellenberger C, Wunderli H(1981)In vitro studies of the fixation of DNA, nucleoprotamine, nucleohistone and proteins. Eur J Cell Biol 25:1–4

    PubMed  CAS  Google Scholar 

  • Kornberg T, Lockwood A, Worcel A (1974) Replication of the Escherichia coli chromosome with a soluble enzyme system. Proc Natl Acad Sci USA 71:3189–3193

    Article  PubMed  CAS  Google Scholar 

  • Kung FC, Raymond J, Glaser DA (1976) Metal ion content of E. coli versus cell age. J Bacteriol 126:1089–1095

    PubMed  CAS  Google Scholar 

  • Laine B, Sautiere P, Spassky A, Rimsky S (1984) A DNA-binding protein from E. coli. Isolation, characterization and its relationship with proteins H1 and B1. Biochem Biophys Res Commun 119:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Lilley DMJ, Palecek E (1984) The supercoil-stabilised cruciform of ColE1 is hyper-reactive to OsO4. EMBO J 3:1187–1192

    PubMed  CAS  Google Scholar 

  • Losso A, Miano, Gianfranceschi GL, Gualerzi C (1982) Proteins from the prokaryotic nucleoid II. Inhibition of DNA transcription by NS1 and NS2 (HU proteins). Biochem Int 5:423–427

    CAS  Google Scholar 

  • Lusk J, Williams RJP, Kennedy EP (1968) Magnesium and the growth of E. coli. J Biol Chem 243: 2618–2624

    PubMed  CAS  Google Scholar 

  • Marcus-Sekura CJ, Carter BJ (1983) Chromatin-like structure of adeno-associated virus DNA in infected cells. J Virol 48:79–87

    PubMed  CAS  Google Scholar 

  • Mason DJ, Powelson DM (1956) Nuclear division as observed in live bacteria by a new technique. J Bacteriol 71:474–479

    PubMed  CAS  Google Scholar 

  • Menzel R, Geliert M (1983) Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34:105–113

    Article  PubMed  CAS  Google Scholar 

  • Miller OL Jr, Hamkalo BA, Thomas CA Jr (1970) Visualisation of bacterial genes in action. Science 169:392–395

    Article  PubMed  Google Scholar 

  • Millonig G (1961) A modified procedure for lead staining of thin sections. J Biophys Biochem Cytol 11:736–739

    Article  PubMed  CAS  Google Scholar 

  • Moncany MLJ (1982) Determination des conditions intracellulaires chez E. coli. Consequences biologiques de leur modification. Thesis Docteur d’Etat, l’Universite de Paris VII

    Google Scholar 

  • Moncany MLJ, Kellenberger E (1981) High magnesium content of Escherichia coli B. Experientia (Basel) 37:846–847

    Article  CAS  Google Scholar 

  • Munns TW, Liszewski MK, Hahn BH (1984) Antibody-nucleic acid complexes. Antigenic domains within nucleosides as defined by solid-phase immunoassay. Biochemistry 23:2958–2964

    Article  PubMed  CAS  Google Scholar 

  • Olmsted JB (1981) Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem 256:11955–11957

    PubMed  CAS  Google Scholar 

  • Pettijohn DE (1982) Structure and properties of the bacterial nucleoid. Cell 30:667–669

    Article  PubMed  CAS  Google Scholar 

  • Piekarski G (1937) Cytologische Untersuchungen an Parathyphus und Coli Bakterien. Arch Mikro-biol 8:428–439

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–213

    Article  PubMed  CAS  Google Scholar 

  • Robinow CF (1944) Cytological observations on bact. coli, proteus vulgaris and various aerobic spore-forming bacteria with special reference to the nuclear structures. J Hyg 43:413–423

    Article  CAS  Google Scholar 

  • Robinow CF (1956) The chromatin bodies of bacteria. Bacteriol Rev 20:207–242

    PubMed  CAS  Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito RM (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671

    Article  PubMed  CAS  Google Scholar 

  • Rouvière-Yaniv J, Gros F (1975) Characterization of a novel low molecular weight DNA-binding protein from Escherichia coli. Proc Natl Acad Sci USA 72:3428–3432

    Article  PubMed  Google Scholar 

  • Rouvière-Yaniv J, Yaniv M, Germond JE (1979) E. coli binding protein HU forms nucleosome-like structures with circular double-stranded DNA. Cell 17:265–274

    Article  PubMed  Google Scholar 

  • Ryter A (1940) Etude au microscope electronique des transformations nucleaires de E. coli K12S et K12S(λ26) apres irradiation aux rayons ultraviolets et aux rayons X. J Biophys Biochem Cytol 8:399–412

    Article  Google Scholar 

  • Ryter A, Kellenberger E, Birch-Andersen A, Maaloe O (1958) Etude au microscope electronique de plasma contenant de l’acide desoxyribonucleique I. Les nucleoides des bacteries en croissance active. Z Naturforsch Sect B 13:597–605

    Google Scholar 

  • Séchaud J (1960) Developpement intracellulaire du coliphage Lambda. Arch Sci (Geneva) 13: 427–474

    Google Scholar 

  • Sinden RR, Pettijohn DE (1981) Chromosomes in living Escherichia are segregated into domains of supercoiling. Proc Natl Acad Sci USA 78:224–228

    Article  PubMed  CAS  Google Scholar 

  • Sinden RR, Carlson JD, Pettijohn DE (1980) Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21:773–783

    Article  PubMed  CAS  Google Scholar 

  • Süssmuth R, Widmann A (1979) γ-irradiated ribosomes from Micrococcus radiodurans in a cell-free protein synthesizing system. Z Naturforsch Sect C 34:565–569

    Google Scholar 

  • Thomas T, Bloomfield V (1978) Collapse of DNA caused by trivalent cations: pH and ionic specificity effects. Biopolymers 22:1097–1106

    Article  Google Scholar 

  • Tulasne R, Vendrely R (1947) Demonstration of bacterial nuclei with ribonuclease. Nature 160: 225

    Article  Google Scholar 

  • Valkenburg JAC, Woldringh CL, Brakenhoff GJ, van der Voort HTM, Nanninga N (1985) Confocal scanning light microscopy of the E. coli nucleoid: comparison with phase contrast and electron microscopy images. J Bacteriol 161:478–483

    PubMed  CAS  Google Scholar 

  • Vosberg HP (1985) DNA topoisomerasis: Enzymes that control DNA conformation. Curr Top Microbiol Immunol 114:19–102

    Article  PubMed  CAS  Google Scholar 

  • Whitfield JF, Murray RGE (1956) The effects of the ionic environment on the chromatin structures of bacteria. Can J Microbiol 2:245–260

    Article  PubMed  CAS  Google Scholar 

  • Woldringh CL (1973) Effect of cations on the organisation of the nucleoplasm in E. coli prefixed with osmiumtetroxyde or glutaraldehyde. Cytobiologie 8:97–111

    CAS  Google Scholar 

  • Yamazaki K, Nagata A, Karo Y, Imamoto F (1984) Isolation and characterization of nucleoid proteins from Escherichia coli. Mol Gen Genet 196:217–224

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Karl Lickfeld in honor of his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bjornsti, M.A., Hobot, J.A., Kelus, A.S., Villiger, W., Kellenberger, E. (1986). New Electron Microscopic Data on the Structure of the Nucleoid and Their Functional Consequences. In: Gualerzi, C.O., Pon, C.L. (eds) Bacterial Chromatin. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71266-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71266-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71268-5

  • Online ISBN: 978-3-642-71266-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics