Aerosols of Smoke, Respiratory Physiology and Deposition

  • W. Holländer
  • W. Stöber
Part of the Archives of Toxicology book series (TOXICOLOGY, volume 9)


Tobacco smoke is discussed as a multi-component droplet aerosol system of finite airborne life time which changes rapidly right after formation near the combustion zone of the tobacco and continues to change gradually when aging and approaching a multiphase steady state between vaporized smoke constituents mixed into the air and the dispersed particulate phase which will eventually vanish because of physical mechanisms removing the smoke particles from the airborne state. Data on chemical composition and physical characteristics of mainstream and sidestream cigarette smoke are compared and the dynamic models of aerosol particle behavior and deposition in the respiratory tract under different physiological conditions are discussed. While differences in chemical composition between mainstream and sidestream smoke aerosol systems are reported in the literature at least for the gas phase, there seems to be no reliable body of evidence confirming that mainstream and sidestream cigarette smokes have sufficiently different physical characteristics which would cause substantially different deposition patterns and different relative deposition in the respiratory tract. However, there are scanty experimental data in the literature on cigarette smoke deposition in the lung which seem to indicate that mainstream smoke deposition may exceed theoretical expectations while sidestream smoke may not. Further experimental results are needed before firm conclusions can be drawn. An ongoing experimental effort is described where deposition of sidestream cigarette smoke will be measured on mouth breathing test panels.

Key words

Aerosol Cigarette Smoke Lung Deposition Respiratory Tract “Passive Smoking” 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beeckmans JM (1970) The deposition of asbestos particles in the human respiratory tract. Intern J Environm Studies 1: 31–34CrossRefGoogle Scholar
  2. Brown JH, Cook KM, Ney FG, Hatch T (1950) Influence of particle size upon the retention of particulate matter in the human lung. Amer J Publ Health 40: 450–458CrossRefGoogle Scholar
  3. Brunnemann KD, Adams JD, Ho DPS, Hoffmann D (1978) The influence of tobacco smoke on indoor atmospheres II: Volatile and tobacco specific nitrosamines in main and side stream smoke and their contribution to indoor pollution. Proceedings 4th Joint Conference on Sensing of Environmental Pollutants. New Orleans, Louisiana 1977, Amer Chem Soc, pp 876–880Google Scholar
  4. Dennis WL (1961) Prepared discussion. In: Davies CN (ed) Inhaled Particles and Vapours. Pergamon Press, Oxford, pp 88–91Google Scholar
  5. Findeisen W (1935) Über das Absetzen kleiner, in der Luft suspendierter Teilchen in der menschlichen Lunge bei der Atmung. Pflüger’s Arch Ges Physiol 236: 367–379CrossRefGoogle Scholar
  6. Giacomelli-Maltoni G, Melandri C, Prodi V, Tarroni G (1972) Deposition efficiency of monodisperse particles in the human respiratory tract. Amer Ind Hyg Assoc J 33: 603–610CrossRefGoogle Scholar
  7. Heyder J, Gebhart J, Heigwer G, Roth C, Stahlhofen W (1973) Experimental studies of the total deposition of aerosol particles in the human respiratory tract. J Aerosol Sci 4: 191–208CrossRefGoogle Scholar
  8. Heyder J, Gebhart J, Roth C, Stahlhofen W, Stuck B, Tarroni G, DeZaiacomo T, Formignani M, Melandri C, Prodi V (1978) Intercomparison of lung deposition data for aerosol particles. J Aerosol Sci 9: 147–155CrossRefGoogle Scholar
  9. Heyder J, Gebhart J, Rudolf G, Stahlhofen W (1980) Physical factors determining particle deposition in the human respiratory tract. J Aerosol Sci 11: 505–515CrossRefGoogle Scholar
  10. Heyder J, Gebhart J, Stahlhofen W, Stuck B (1982) Biological variability of particle deposition in the human respiratory tract during controlled and spontaneous mouth breathing. Ann occup Hyg 26: 137–147PubMedCrossRefGoogle Scholar
  11. Heyder J (1985) Studies of particle deposition and clearance in humans. In: Grosdanoff P et al. (eds) Problems of Inhalatory Toxicity Studies, BGA-Publ, MMV-Medizin Verlag, MunichGoogle Scholar
  12. Hiller FC, McCusker KT, Mazumder MK, Wilson JD, Bone RC (1982) Deposition of sidestream cigarette smoke in the human respiratory tract. Amer Rev Resp Dis 125: 406–408PubMedGoogle Scholar
  13. Ishizu Y, Ohta K, Okada T (1980) The effect of moisture on the growth of cigarette smoke particles. Beitr Tabakforsch Internat 10: 161–168Google Scholar
  14. Keith Ch, Derrick JC (1960) Measurement of the particle size distribution and concentration of cigarette smoke by the “conifuge”. J Colloid Sci 15: 340–356CrossRefGoogle Scholar
  15. Klus H, Kuhn H (1982) Verteilung verschiedener Tabakrauchbestandteile auf Haupt-and Nebenstromrauch (Eine Übersicht). Beitr Tabakforsch Internat 11: 229–265Google Scholar
  16. Landahl HD (1950) On the removal of air-borne droplets by the human respiratory tract: The lung. Bull Math Biophys 12: 43–56CrossRefGoogle Scholar
  17. Lipp G (1965) Zur Definition der Selektivität und der verschiedenen Rauchströme der Cigarette. Beitr Tabakforsch 3: 220–222Google Scholar
  18. McCusker K, Hiller C, Wilson D, Mazumder M, Bone R (1981) Characterization of sidestream smoke from low tar cigarettes and cigars. Amer Rev Resp Dis 123: 107Google Scholar
  19. McCusker K, Hiller C, Mazumder M, Bone R (1981) Dynamic growth of cigarette smoke particles (Abstract). Chest 80: 349CrossRefGoogle Scholar
  20. Melandri C, Tarroni G, Prodi V, de Zaiacomo T, Formignani M, Lombardi CC (1983) Deposition of charged particles in the human airways. J Aerosol Sci 14: 657–669CrossRefGoogle Scholar
  21. Mitchell RI (1962) Controlled measurement of smoke particle retention in the respiratory tract. Amer Rev Resp Dis 85: 526–533PubMedGoogle Scholar
  22. Neurath G, Ehmke H (1964) Apparatur zur Untersuchung des Nebenstromrauches. Beitr Tabakforsch 2: 117–121Google Scholar
  23. Okada T, Ishizu Y, Matsunuma K (1977) Determination of particle size distribution and concentration of cigarette smoke by a light scattering method. Beitr Tabakforsch 9: 153–160Google Scholar
  24. Patriakanos C, Hoffmann D (1979) Chemical studies on tobacco smoke LXIV: On the analysis of aromatic amines in cigarette smoke. J Anal Toxicol 3: 150–154Google Scholar
  25. Polydorova M (1961) An attempt to determine the retention of tobacco smoke by means of membrane filters. In: Davies CN (ed) Inhaled Particles and Vapours. Pergamon Press, Oxford, pp 142–144Google Scholar
  26. Porstendörfer J, Schraub A (1972) Konzentration und mittlere Teilchengröße des Haupt-und Nebenstromrauches der Zigarette. Staub-Reinh Luft 32: 409–412Google Scholar
  27. Pyriki C (1960) Polycyclische Kohlenwasserstoffe im Zigarettenrauch. Mitteilungsblatt der GdChFachgruppe Lebensmittel-Chemie und Gerichtliche Chemie 2: 27Google Scholar
  28. Pyriki C, Müller R, Moldenhauer W (1960) Über das Auftreten von polycyclischen Kohlenwasserstoffen im Zigarettenrauch. II. Mitteilung: Untersuchung des lipophilen Anteils der einzelnen Rauchphasen sowie des Tabaks. Ber Inst Tabakforsch Dresden 7: 81–102Google Scholar
  29. Pyriki C (1963) Polycyclische und aliphatische Kohlenwasserstoffe des Tabakrauchs. Nahrung 7: 439–448CrossRefGoogle Scholar
  30. Stöber W (1982) Generation, size distribution and composition of tobacco smoke aerosols. Recent Adv Tobacco Sci 8: 3–41Google Scholar
  31. Task Group on Lung Dynamics (1966) Deposition and retention models for internal dosimetry of the human respiratory tract. Health Physics 12: 173–208Google Scholar
  32. van Wijk AM, Patterson HS (1940) The percentage of particles of different sizes removed from dust-laden air by breathing. J Ind Hyg Toxico 122: 31–35Google Scholar
  33. Wynder EL, Hoffmann D (1967) Tobacco and tobacco smoke. Studies in experimental carcinogenesis. Academic Press, New York-London, p 230 ff.Google Scholar
  34. Yeates DB, Gerrity TR, Garrard CS (1982) Characteristics of tracheobronchial deposition and clearance in man. Ann Occup Hyg 26: 259–272CrossRefGoogle Scholar
  35. Yu CP, Nicolaides P, Soong TT (1979) Effect of random airway sizes on aerosol deposition. Amer Ind Hyg Assoc J 40: 999–1005CrossRefGoogle Scholar
  36. Yu CP, Diu CK (1982) A probabilistic model for intersubject deposition variability of inhaled particles. Aerosol Sci Technol 1: 353–362Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • W. Holländer
    • 1
  • W. Stöber
    • 1
  1. 1.Fraunhofer-Institut für Toxikologie und Aerosolforschung (Fh-ITA)Hannover 61Germany

Personalised recommendations