Skip to main content

Cellular Defense Mechanisms Against Toxic Substances

  • Conference paper
Toxic Interfaces of Neurones, Smoke and Genes

Part of the book series: Archives of Toxicology ((TOXICOLOGY,volume 9))

Abstract

Recent studies of cellular defense mechanisms against toxic substances are reviewed with particular emphasis on the critical functions of reduced glutathione. Studies of the metabolism of paracetamol and of the redox active quinone menadione in isolated rat hepatocytes, are summarized in order to illustrate how multiple defense mechanisms are involved in the protection of the cell against the toxicity of these agents. Cytotoxicity with both agents occurs only after the cellular defense mechanisms have become exhausted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerboom TPM, Bilzer M, Sies H (1982) Competition between transport of glutathione disulphide ( GSSG) and glutathione S-conjugates from perfused rat liver into bile. FEBS Lett 140: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Bladeren PJ van, Breimer DD, Rotteveel-Smijs GMT, Jong RAW de, Buijs W, Gen A van der, Mohn GR (1980) The role of glutathione conjugation in the mutagenicity of 1,2-dibromoethane. Biochem Pharmacol 29: 2975–2982

    Article  PubMed  Google Scholar 

  • Bridges JW, Benford DJ, Hubbard SA (1983) Mechanisms of toxic injury. NY Akad Sci 407:42–63

    Article  CAS  Google Scholar 

  • Cummings SW, Prough RA (1983) Metabolic formation of toxic metabolites. In: Caldwell J, Jakoby WB (eds) Biological Basis of Detoxication. Academic Press, Inc., New York, pp 1–30

    Google Scholar 

  • Dahlin DC, Miwa GT, Lu AYH, Nelson SD (1984) N-acetyl-p-benzoquinone imine: a cytochrome P450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81: 1327–1331

    Article  PubMed  CAS  Google Scholar 

  • De Baun JR, Miller EC, Miller JA (1970) N-hydroxy-2-acetylaminofluorene sulfotransferase: Its probable role in carcinogenesis and in protein-(methion-S-yl) binding in rat liver. Cancer Res 30: 577–595

    Google Scholar 

  • Di Monte D, Bellomo G, Thor H, Nicotera P, Orrenius S (1984) Menadione-induced cytotoxicity is associated with protein thiol oxidation and alterations in intracellular Ca’ homeostasis Arch Biochem Biophys 235: 343–350

    Article  PubMed  Google Scholar 

  • Eklöw L, Moldéus P, Orrenius S (1984) Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis-(2-chloroethyl)1-nitrosourea. Eur J Biochem 138: 459–463

    Article  PubMed  Google Scholar 

  • Elstner EF, Osswald W, Konze IR (1980) Reactive oxygen species: Electron donor-hydrogen peroxide complex instead of OH radicals? FEBS Lett 121: 219–221

    Article  CAS  Google Scholar 

  • Ernster L (1967) DT diaphorase. Meth Enzymol 10: 309–317

    Article  CAS  Google Scholar 

  • Gillette JR, Mitchell JR, Brodie BB (1974) Biochemical basis for drug toxicity. A Rev Pharmacol 14: 271–288

    Article  CAS  Google Scholar 

  • Hammock BD, Gill S, Stamoudis V, Gilbert LJ (1976) Soluble mammalian epoxide hydratase: Action on juvenile hormone and other terpenoid epoxides. Comp Biochem Physiol 53: 263–265

    CAS  Google Scholar 

  • Hassan HM, Fridovich I (1980) Superoxide dismutases: detoxication of a free radical. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 1. Academic Press, Inc., New York, pp 311–332

    Google Scholar 

  • Hildebrandt AG, Speck M, Roots J (1973) Possible control of hydrogen peroxide production and degradation in microsomes during mixed function oxidation reaction. Biochem Biophys Res Commun 54: 968–975

    Article  PubMed  CAS  Google Scholar 

  • Jaffe DR, Hassall CD, Brendel K, Gandolfi AJ (1983) In vivo and in vitro nephrotoxicity of the cysteine conjugate of hexachlorobutadiene. J Toxicol Environ Health 11:857–867

    Google Scholar 

  • Jakoby WB, Habig WH (1980) Glutathione transferases. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 2. Academic Press, Inc., New York, pp 63–94

    Google Scholar 

  • Jakoby WB, Sekura RD, Lyon ES, Marcus CJ, Wang J-L (1980) Sulfotransferases. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 2. Academic Press, Inc., New York, pp 199–228

    Google Scholar 

  • Jones DP, Thor H, Andersson B, Orrenius S (1978) Detoxification reactions in isolated hepatocytes: Role of glutathione peroxidase, catalase, and formaldehyde dehydrogenase in reactions relating to N-demethylation by the cytochrome P-450 system. J Biol Chem 253: 6031–6037

    PubMed  CAS  Google Scholar 

  • Jones DP, Moldéus P, Stead AH, Ormstad K, Jörnvall H, Orrenius S (1979) Metabolism of glutathione and a glutathione conjugate by isolated kidney cells. J Biol Chem 254: 2787–2792

    PubMed  CAS  Google Scholar 

  • Jones DP, Eklöw L, Thor H, Orrenius S (1981) Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H202. Arch Biochem Biophys 210: 505–516

    Article  PubMed  CAS  Google Scholar 

  • Kadlubar FF, Miller JA, Miller EC (1977) Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxyarylamines in relation to urinary bladder carcinogenesis. Cancer Res 37: 805–814

    PubMed  CAS  Google Scholar 

  • Kasper CB, Henton D (1980) Glucuronidation. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 2. Academic Press, Inc., New York, pp 3–36

    Google Scholar 

  • Kosower NS, Kosower EM (1978) The glutathione status of cells. Intl Rev Cytol 54: 109–160

    Article  CAS  Google Scholar 

  • Lock EA (1982) Renal necrosis produced by halogenated chemicals. In: Bach PH, Bonner FW, Bridges JW, Lock EA (eds) Nephrotoxicity: Assessment and Pathogenisis. John Wiley and Sons, Chichester, pp 396–408

    Google Scholar 

  • Lu AYH, West SB (1980) Multiplicity of mammalian microsomal cytochromes P-450. Pharmacol Rev 31: 277–295

    Google Scholar 

  • Meredith MJ, Reed DJ (1982) Status of the mitochondrial pool of glutathione in the isolated hepatocyte. J Biol Chem 257: 3747–3753

    PubMed  CAS  Google Scholar 

  • Miller EC, Miller JA (1974) Biochemical mechanisms of chemical carcinogenesis. In: Busch H (ed) The Molecular Biology of Cancer. Academic Press, Inc., New York, pp 377–402

    Google Scholar 

  • Moldéus P (1978) Paracetamol metabolism and toxicity in isolated hepatocytes from rat and mouse. Biochem Pharmacol 27: 2859–2863

    Article  PubMed  Google Scholar 

  • Moldéus P (1981) Use of isolated cells in the study of paracetamol metabolism and toxicity: capacity of conjugative pathways and glutathione homeostasis. In: Davis M, Tredger JM, Williams R (eds) Drug Reactions and the Liver. Pitman Medical Ltd., London, pp 144–156

    Google Scholar 

  • Moldéus P, Jernström B (1983) Interactions of glutathione with reactive intermediates. In: Larsson A, Orrenius S, Holmgren A, Mannervik B (eds) Functions of Glutathione — Biochemical, Physiological, Toxicological and Clinical Aspects. Raven Press, New York, pp 99–108

    Google Scholar 

  • Moore M, Thor H, Moore G, Nelson S, Moldéus P, Orrenius S (1985) The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine ( NAPQI) in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca. J Biol Chem 260: 13035–13040

    PubMed  CAS  Google Scholar 

  • Morgenstern R, Meijer J, Pierre JW De, Ernster L (1980) Characterization of rat-liver microsomal glutathione S-transferase activity. Eur J Biochem 104: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Nash JA, King LJ, Lock EA, Green T (1984) The metabolism and disposition of hexochloro-l:3-bu- tadiene in the rat and its relevance to nephrotoxicity. Toxicol Appl Pharmacol 73: 124–137

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Moore M, Bellomo G, Mirabelli F, Orrenius S (1985a) Demonstration and partial characterization of glutathione disulfide-stimulated ATPase activity in the plasma membrane fraction from rat hepatocytes. J Biol Chem 260: 1999–2002

    PubMed  CAS  Google Scholar 

  • Nicotera P, Baldi C, Svensson S-A, Larsson R, Bellomo G, Orrenius S (1985b) Glutathione S-conjugates stimulate ATP hydrolysis in the plasma membrane fraction of rat hepatocytes. FEBS Lett 87: 123–125

    Google Scholar 

  • Oesch F (1980) Epoxide hydrolase. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 2. Academic Press, Inc., New York, pp 277–290

    Google Scholar 

  • Orrenius S, Ernster L (1974) Microsomal cytochrome P-450-linked monooxygenase system in mammalian tissues. In: Hayaishi O (ed) Molecular Mechanisms of Oxygen Activation. Academic Press, Inc., New York, pp 215–244

    Google Scholar 

  • Orrenius S, Thor H, Monte D Di (1984) Metabolic activation and inactivation — a critical balance in toxicity. In: Caldwell J, Paulson GD (eds) Foreign Compound Metabolism. Taylor and Francis, London, pp 235–255

    Google Scholar 

  • Patel KB, Willson RL (1973) Semiquinone free radicals and oxygen pulse radiolysis studies of one-electron-transfer equilibria. J Chem Soc Faraday Trans 69: 814–825

    Article  Google Scholar 

  • Pryor WA (1976) The role of free radical reactions in biological systems. In: Pryor WA (ed) Free Radicals in Biology, vol 1. Academic Press, Inc., New York, pp 1–49

    Google Scholar 

  • Ross D, Albano E, Nilsson U, Moldéus P (1984) Thiyl radicals-formation during peroxidase-catalyzed metabolism of acetaminophen in the presence of thiols. Biochem Biophys Res Commun 125: 109–115

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Beutler E (1969) The transport of oxidized glutathione from human erythrocytes. J Biol Chem 244: 9–16

    PubMed  CAS  Google Scholar 

  • Tateishi M, Shimizu H (1980) Cysteine conjugate ß-lyase. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 2. Academic Press, Inc., New York, pp 121–130

    Google Scholar 

  • Thor H, Smith MT, Hartzell P, Bellomo G, Jewell SA, Orrenius S (1982) The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem 257: 12419–12425

    PubMed  CAS  Google Scholar 

  • Wallin A, Jones TW, Gerdes RG, Ormstad K (1985) The formation of glutathione conjugates of hexochlorobutadiene by cytosolic and microsomal fractions derived from male rat liver. Abstract to the 26th Congress of the European Societa of Toxicology, June 16–19, 1985, Kuopio, Finland

    Google Scholar 

  • Wefers H, Sies H (1983) Hepatic low-level chemiluminescence during redox cycling of menadione and the menadione-glutathione conjugate: relation to glutathione and NAD(P)H: quinone reductase (DT-diaphorase) activity. Arch Biochem Biophys 224: 568–578

    Article  PubMed  CAS  Google Scholar 

  • Wendel A (1980) Glutathione Peroxidase. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 1. Academic Press, Inc., New York, pp 333–353

    Google Scholar 

  • Wislocki PG, Miwa GT, Lu AYH (1980) Reactions catalyzed by the cytochrome P-450 system. In: Jakoby WB (ed) Enzymatic Basis of Detoxication, vol 1. Academic Press, Inc., New York, pp 135–182

    Google Scholar 

  • Wolf CR, Berry PN, Nash JA, Green T, Lock EA (1984) Role of microsomal and cytosolic glutathione S-transferase in the conjugation of hexochloro-1,3-butadiene and its possible relevance to toxicity. J Pharmacol Expt Ther 228: 202–208

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Jones, T.W., Thor, H., Orrenius, S. (1986). Cellular Defense Mechanisms Against Toxic Substances. In: Chambers, C.M., Chambers, P.L., Tuomisto, J. (eds) Toxic Interfaces of Neurones, Smoke and Genes. Archives of Toxicology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71248-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71248-7_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16589-7

  • Online ISBN: 978-3-642-71248-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics