Advertisement

The Influence of Volatile Anesthetics on Cerebral Blood Flow and Cerebral Autoregulation

  • H. Van Aken
  • G.-M. Hauss
  • T. Brüssel
  • W. Fitch
Conference paper
  • 31 Downloads
Part of the Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine book series (A+I, volume 185)

Abstract

The intracranial space, which is surrounded by cranial bone, can be divides into several compartments; in normal adults it consists of: 700–900 ml glia, 500–700 ml neurons, 100–150 ml blood (arterial and venous), 100–150 ml cerebrospinal fluid (CSF), and >75 ml extracellular fluid (ECF).

Keywords

Cerebral Blood Flow Mean Arterial Pressure Volatile Anesthetic Minimal Alveolar Concentration Cerebral Autoregulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artru AA, Nugent M, Michenfelder JD (1982) Enflurane causes a prolonged and reversible increase in the rate of CSF production in the dog. Anesthesiology 57: 255–260PubMedCrossRefGoogle Scholar
  2. 2.
    Artru AA (1983) Effects of halothane and fentanyl on the rate of CSF production in dogs. Anesth Analg 62: 581–585PubMedCrossRefGoogle Scholar
  3. 3.
    Marx GF, Andrews IC, Orkin LR (1982) Cerebrospinal fluid pressure during halothane anaesthesia. Ca. Anaesth Soc 9: 239–245CrossRefGoogle Scholar
  4. 4.
    McDonwall DG (1967) The effects of clinical concentrations of halothane on the blood flow and oxygen uptake of cerebral cortex. Br J Anaesth 39: 186–196CrossRefGoogle Scholar
  5. 5.
    Stullken EH, Milde JH, Michenfelder JD, Tinker JH (1977) The nonlinear response of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane and thiopetol. Anesthesiology 46: 28–34PubMedCrossRefGoogle Scholar
  6. 6.
    Albrecht RF, Miletich DJ, Rosenberg R, Zahed B (1977) Cerebral blood flow and metabolic changes from induction to onset of anesthesia with halothane or pentobarbital. Anesthesiology 47: 252–256PubMedCrossRefGoogle Scholar
  7. 7.
    Steen PA (1982) Die Wirkung von Inhalationsanaesthetika auf das Gehirn. In: Peter K, Jesch F (eds) Inhalationsanaesthesie heute und morgen. Springer Berlin Heidelberg New York (Anaesthesiologie und Intensivmedizin, vol 149 )Google Scholar
  8. 8.
    Miletich DJ, Ivankovich AD, Albrecht RF, Reimann CR, Rosenberg R, McKissic ED (1976) Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg 55: 100–109PubMedGoogle Scholar
  9. 9.
    Misfeldt BB, Jörgensen PB, Rishöj M (1974) The effect of nitrous oxide and halothane upon the intracranial pressure in hypocapnic patients with intracranial disorders. Br J Anaesth 46: 853–858PubMedCrossRefGoogle Scholar
  10. 10.
    Christensen MS, Hoedt-Rasmussen K, Lassen NA (1967) Cerebral vasodilatation by halothane anaesthesia in man and its potentiation by hypotension and hypercapnia. Br J Anaesth 39:927– 934Google Scholar
  11. 11.
    Adams RW, Gronert GA, Sundt TM, Michenfelder JD (1972) Halothane, hypocapnia and cerebrospinal fluid pressure in neurosurgery. Anesthesiology 37: 510–517PubMedCrossRefGoogle Scholar
  12. 12.
    Michenfelder JD, Cucchiara RF (1974) Canine cerebral oxygen consumption during enflurane anesthesia and its modification during induced seizures. Anesthesiology 40: 575–580PubMedCrossRefGoogle Scholar
  13. 13.
    Boop WC, Knight R (1978) Enflurane anesthesia and changes of intracranial pressure. J Neurosurg 48: 228–231PubMedCrossRefGoogle Scholar
  14. 14.
    Cunitz G, Danhauser I, Gruß P (1976) Die Wirkung von Endlurane (EthraneR) im Vergleich zu Halothan auf den intracraniellen Druck. Anaesthesist 25: 323–330PubMedGoogle Scholar
  15. 15.
    Wollman H, Schmith AL, Neigh JL (1969) Cerebral blood flow and oxygen consumption in man during electrocephalographic seizure patterns associated with ethrane anesthesia in cerebral blood flow. In: Brock M, Fieschi C, et al. (eds) Cerebral blood flow. Springer, Berlin Heideiber New York pp 246–248Google Scholar
  16. 16.
    Murphy FL, Kennell EM, Johnstone RE (1974) The effects of enflurane, isoflurane and halothane on cerebral blood flow and metabolism in man. Abstract of scientific papers, Annual meeting of the American Socienty of Anesthesiologist, pp 62–63Google Scholar
  17. 17.
    Adams RW, Cucchiara RF, Gronert GA, Messik JM, Michenfelder JD (1981) Isoflurane and cerebrospinal fluid pressure in neurosurgical patients. Anesthesiology 54: 97–99PubMedCrossRefGoogle Scholar
  18. 18.
    Campkin TV (1984) Isoflurane and extradural pressure. A study in neurosurgical patients. Br J Anaesth 56: 1083–1087PubMedCrossRefGoogle Scholar
  19. 19.
    Grosslight K, Colohain A, Bedford RF (1984) Isoflurane for neuroanesthesia risk factors for in-creases in ICP Abstract of the XII Annual Meeting of the Society of Neurosurgical Anesthesia and Neurologic Supportive Care, New Orleans pp 8–10Google Scholar
  20. 20.
    Newberg LA, Milde JH Michenfelder JD (1983) The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology 59: 23–28PubMedCrossRefGoogle Scholar
  21. 21.
    Newberg LA, Michenfelder JD (1983) Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology 59: 29–35PubMedCrossRefGoogle Scholar
  22. 22.
    Lam AM, Geld AW (1983) Cardiovascular effects of isoflurane-induced hypotension for cerebral aneurysm surgery. Anesth Analg 62: 742–748PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • H. Van Aken
  • G.-M. Hauss
  • T. Brüssel
  • W. Fitch

There are no affiliations available

Personalised recommendations