Changes in Hemodynamics, Regional Organ Blood Flow, and Tissue Oxygen Consumption Under Isoflurane and Enflurane

  • P. Conzen
  • J. Hobbhahn
  • A. Goetz
  • H. Habazettl
  • T. Granetzny
  • K. Peter
  • W. Brendel
Conference paper
Part of the Anaesthesiologie und Intensivmedizin Anaesthesiology and Intensive Care Medicine book series (A+I, volume 185)


Many years after the introduction of the volatile anesthetics isoflurane and enflurane into clinical practice, still no agreement has been reached about the influence of these anesthetics on organ blood flow. This vagueness is partly due to the fact that on the one hand different working groups chose different end expiratory concentrations of the anesthetics in their studies [1, 4, 17], but on the other hand often added nitrous oxide to the inspired air to maintain realistic clinical conditions [3, 16]. The objective of this work is a direct comparison of the effects of equianesthetic concentrations of the inhalation anesthetics enflurane and isoflurane on general hemodynamics, regional organ blood flow, and oxygen supply of hepatic tissue.


Cardiac Output Mean Arterial Pressure Pulmonary Capillary Wedge Press Hepatic Blood Flow Mean Pulmonary Arterial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen RYZ, Fan FC, Carlin RD, Schuessler GB, Chien S (1984) Comparison of regional cerebral blood flow during Isoflurane and Halothane induced hypotension. Anesthesiology 61: A21CrossRefGoogle Scholar
  2. 2.
    Conzen P (1985) Systemische und regionale Kreislaufveränderungen bei Beatmung mit positiv end-expiratorischem Druck (PEEP). Dissertation, MünchenGoogle Scholar
  3. 3.
    Cucchiara RF, Rheye RA, Michenfelder JD (1974) The effects of isoflurane on canine cerebral metabolism and blood flow. Anesthesiology 10: 571CrossRefGoogle Scholar
  4. 4.
    Gelman S, Fowler KC, Smith LR (1984) Regional blood flow during isoflurane and halothane anesthesia. Anesth Analg 63: 557PubMedGoogle Scholar
  5. 5.
    Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with ra- dionuclide-labelled particles. Prog Cardiovasc Dis 20: 55PubMedCrossRefGoogle Scholar
  6. 6.
    Huths RL, Campbell D, Fitch W (1980) Effects of enflurane and halothane on liver blood flow and oxyge consumption in the greyhound. Br J Anaesth 52: 1079CrossRefGoogle Scholar
  7. 7.
    Kessler M, Lübbers DW (1966) Aufbau und Anwendungsmöglichkeiten verschiedener pO2-Elektroden. Pflügers Arch Ges Physiol 291: R32Google Scholar
  8. 8.
    Koblin DD, Eger EI, Johnson BH, Collins P, Harper MH, Terrell RC, Speers L (1981) Minimum alveolar concentrations and oil/gas partition coefficients of four anesthetic isomers. Anesthesiology 54: 314PubMedCrossRefGoogle Scholar
  9. 9.
    Lübbers DW (1977) Die Bedeutung des lokalen Gewebesauerstoffdruckes und des pO2-Histogrammes für die Beurteilung der Sauerstoffversorgung eines Organes. Prakt Anästh 12: 184Google Scholar
  10. 10.
    Moffitt EA, Scovil JE, Barker RA, Imrie DD, Glenn JJ, Cousin CL, Sullivan JA, Kinley CE (1984) The effects of nitrous oxide on myocardial metabolism and hemodynamics during fentanyl or enflurane anesthesia in patients with coronary disease. Anesth Analg 63: 1071PubMedGoogle Scholar
  11. 11.
    Newberg LA, Milde JH, Michenfelder JD (1984) Systemic and cerebral effects of Isoflurane-induced hypotension in dogs. Anesthesiology 60: 541PubMedCrossRefGoogle Scholar
  12. 12.
    Richardson PDI, Withrington PG (1981) Liver blood flow: 1. Intrinsic and nervous control of liver blood flow. Gastroenterology 81: 159PubMedGoogle Scholar
  13. 13.
    Rudolph AM, Heymann MA (1967) The circulation of the fetus in utero. Circ Res 21: 163PubMedGoogle Scholar
  14. 14.
    Stullken EH, Milde JH, Michenfelder JD, Tinker JH (1977) The non-linear responses of cerebral metabolism to low concentrations of Halothane, Enflurane, Isoflurane, and Thiopental. Anesthesiology 46: 28PubMedCrossRefGoogle Scholar
  15. 15.
    Tarnow J, Eberlein HJ, Oser G, Patschke D, Schneider D, Schweichel D, Milde J (1977) Hämodynamik, Myokardkontraktilität, Ventrikelvolumina und Sauerstoffversorgung des Herzens unter verschiedenen Inhalationsanästhetika. Anaesthesist 26: 220PubMedGoogle Scholar
  16. 16.
    Todd MM, Drummond JC, Shapiro HM (1982) Comparative cerebrovascular and metabolic effects of halothane, enflurane, and isoflurane. Anesthesiology 57: A332CrossRefGoogle Scholar
  17. 17.
    Tranquilli WJ, Manohar M, Parks CM, Thurmon JC, Theodorakis MC, Benson GJ (1982) Systemic and regional blood flow distribution in unanesthetized swine and swine anesthetized with Halothane + Nitrous oxide, Halothane, or Enflurane. Anesthesiology 56: 369PubMedCrossRefGoogle Scholar
  18. 18.
    Vogel H, Günther H, Harrison DK, Kessler M, Peter K (1974) The influence of Isoflurane and Enflurane on tissue oxygenation and microcirculation of the dog myocardium. Anesthesiology 61: A5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • P. Conzen
  • J. Hobbhahn
  • A. Goetz
  • H. Habazettl
  • T. Granetzny
  • K. Peter
  • W. Brendel

There are no affiliations available

Personalised recommendations