Skip to main content

Part of the book series: Biotechnology Monographs ((BIOTECHNOLOGY,volume 2))

  • 833 Accesses

Abstract

Several anaerobic reactor types are utilised for waste treatment by biological means; these can be broadly divided into two groups, namely the fixed-film reactors and the non-attached growth systems. The biomass of the former comprises bacteria attached as films to inert supportive media; the latter depend for their operation on the metabolic activity of microorganisms suspended as flocs or granules in the reactor vessel. The bacteria in suspended growth processes must form flocs to remain in the reactor, and the efficiency of non-attached biomass systems is to a great extent dependent upon the floc-forming and settling abilities of the sludge inoculum used to initiate the anaerobic digestion process. The microflora of anaerobic reactors are almost exclusively bacterial; although protozoa may be present, they are generally introduced with the influent and play no active part in the degradation reactions [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hobson PN (1982) Production of biogas from agricultural wastes. In: Subba Rao NS (ed) Advances in agricultural microbiology. Butterworth Scientific, London, p 523

    Google Scholar 

  2. van den Berg L (1977) Can J Microbiol 23: 898

    Article  Google Scholar 

  3. Lehmann V, Wellinger A (1981) Biogas production from full-scale on-farm digesters. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 353

    Google Scholar 

  4. Anderson GK, Donnelly T (1978) Anaerobic contact digestion for treating high strength soluble wastes. In: Mattock G (ed) New processes of wastewater treatment and recovery. Ellis Horwood, Chichester, p 75

    Google Scholar 

  5. Tapp MD J (1981) A commercial biogas producing plant. In: Vogt F (ed) Energy conservation and use of renewable energies in the bioindustries. Pergamon, Oxford, p 473

    Google Scholar 

  6. Mills PJ (1979) Agric Wastes 1: 57

    Article  Google Scholar 

  7. Morris JE (1980) The digestion of crop residues - an example from the Far East. In: Stafford DA, Wheatley BI, Hughes DE (eds) First Int Symp on Anaerobic Digestion, Cardiff, 17–21 Sept 1979. Applied Science Publishers, London, p 289

    Google Scholar 

  8. Lin Chou W, Speece RE, Siddiqi RH (1979) Biotechnol Bioeng Symp 8: 391

    CAS  Google Scholar 

  9. Converse JC, Graves RE, Evans GW (1977) Trans Am Soc Env Eng 1977: 336

    Google Scholar 

  10. Van Velsen AFM (1977) Neth J Agric Sci 25: 151

    Google Scholar 

  11. Mosey FE (1981) Trib Cebedeau 34: 389

    CAS  Google Scholar 

  12. Kandier O, Winter J, Temper U (1981) Methane fermentation in the thermophilic range. In: Palz W, Chartier P, Hall DO (eds) Energy from biomass. Applied Science Publishers, London, p 472

    Google Scholar 

  13. Maurer K, Pollack H (1983) Rep Contractors Meeting of European Comm, Paria, Italy, R and D

    Google Scholar 

  14. De Faveri HP, Nyns EJ (1981) Slaughterhouse waste treatment by biomethanation. In: 2nd Int Symp on Anaerobic Digestion, 6–11 Sept., Travemünde, Germany

    Google Scholar 

  15. Klass DL (1984) Science 223: 1021

    Article  CAS  Google Scholar 

  16. Rimkus RR, Ryan JM, Cook EJ (1982) J Water Pollut Control Fed 54: 1447

    CAS  Google Scholar 

  17. Therkelsen HH (1979) J Water Pollut Control Fed 51: 1949

    CAS  Google Scholar 

  18. McConville T, Maier WJ (1979) Biotechnol Bioeng Symp 8: 345

    CAS  Google Scholar 

  19. Callander IJ, Barford JP (1983) Biotechnol Lett 5: 147

    Article  CAS  Google Scholar 

  20. van den Heuvel JC, Zoetemeyer RJ, Boelhouver C (1981) Biotechnol Bioeng 23: 2001

    Article  Google Scholar 

  21. Sutton PM, Li A, Evans RR, Korchin S (1982) Dorr-Oliver’s fixed film and suspended growth anaerobic systems for industrial wastewater treatment and energy recovery. In: Proc 37th Ind Waste Conf, Purdue University, Lafayette, Indiana 1982. Ann Arbor Science, Ann Arbor Michigan, p 667

    Google Scholar 

  22. Lane AG (1984) Environ Technol Lett 5: 141

    Article  CAS  Google Scholar 

  23. Schlegel S, Kalbskopf KH (1981) Treatment of liquors from heat treated sludge using the anaerobic contact process. In: 2nd Int Symp on Anaerobic Digestion, 6–11 Sept., Travemünde, Germany

    Google Scholar 

  24. Schroepfer CJ, Fullen WJ, Johnson AS, Ziemke NR, Anderson JJ (1955) Sewage Ind Wastes 27: 460

    CAS  Google Scholar 

  25. Anderson GK, Donnelly T, Letten DJ (1980) Anaerobic treatment of high-strength industrial wastewaters. In: 3rd Int Congress on Ind Wastewater and Wastes, Stockholm

    Google Scholar 

  26. Donnelly T (1978) Process Biochem 13: 14

    CAS  Google Scholar 

  27. Anderson GK, Duarte AC (1980) Environ Technol Lett 1: 484

    Article  CAS  Google Scholar 

  28. van den Berg L, Lentz CP (1980) Performance and stability of the anaerobic contact process as affected by waste composition, inoculation and solids retention time. In: 35th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1980. Ann Arbor Science, Ann Arbor Michigan, p 496

    Google Scholar 

  29. Stafford DA, Etheridge SP (1983) I Chem E Symp 77: 141

    CAS  Google Scholar 

  30. Schroepfer GJ, Ziemke NR (1959) Sewage Ind Wastes 31: 164

    CAS  Google Scholar 

  31. Simpson DE (1971) Water Res 5: 523

    Article  CAS  Google Scholar 

  32. Heertjes PM, van der Meer RR (1979) Comparison of different methods for anaerobic treatment of dilute wastewaters. In: Proc 34th Ind Waste Conf, Purdue Univ, Lafayette, Indiana 1979. Ann Arbor Science, Ann Arbor Michigan, p 790

    Google Scholar 

  33. Cillie GG, Henzen MR, Stander GJ, Baillie RD (1969) Water Res 3: 623

    Article  CAS  Google Scholar 

  34. Stafford DA (1983) Biotechnol Lett 5: 639

    Article  Google Scholar 

  35. Callander IJ, Barford JP (1983) Biotechnol Lett 5: 755

    Article  CAS  Google Scholar 

  36. Heijnen JJ Development of a high rate fluidised bed biogas reactor. In: Anaerobic Wastewater Treatment: Proc Eur Symp, Nov. 1983, Noordwijkerhaout, Netherlands, p 259

    Google Scholar 

  37. Ross WR (1984) Water SA 10: 197

    CAS  Google Scholar 

  38. Christensen DR, Gerick JA, Ehlen JE (1984) J Water Pollut Control Fed 56: 1059

    CAS  Google Scholar 

  39. Hulsoff-Pol LW, de Zeeuw WJ, Velzeboer CTM, Lettinga G (1983) Water Sci Technol 15: 291

    Google Scholar 

  40. Buijs C, Heertjes PM, van der Meer RR (1982) Biotechnol Bioeng 24: 1975

    Article  CAS  Google Scholar 

  41. Schwartz LJ, De Baere LA, Lanz RW (1982) Biotechnol Bioeng Symp 11: 463

    Google Scholar 

  42. Lettinga G, van Velsen AFM, de Zeeuw W, Hobma SW (1979) Feasibility of the upflow anaerobic sludge blanket (UASB) process. In: Proc Nat Conf on Environ Eng, San Francisco, July 9–11. ASCE, p 35

    Google Scholar 

  43. Lettinga G (1980) Anaerobic digestion for energy saving and production. In: Int Conf on Energy and Biomass, Brighton

    Google Scholar 

  44. de Zeeuw W, Lettinga G (1983) Acclimation of digested sewage sludge during start-up of an upflow anaerobic sludge blanket (UASB) reactor. In: Proc 35th Ind Waste Conf, Purdue Univ, Lafayette, Indiana. Ann Arbor Science, Ann Arbor Michigan, p 39

    Google Scholar 

  45. Lane AG (1983) Environ Technol Lett 4: 349

    Article  CAS  Google Scholar 

  46. Lettinga G, van der Geest ATh, Hobma S, van der Laan J (1979) Water Res 13: 725

    Article  CAS  Google Scholar 

  47. Wiegant WM, Claasen JA, Borghans AJML, Lettinga G: High rate thermophilic anaerobic digestion for the generation of methane from organic wastes. In: Anaerobic Wastewater Treatment: Proc Eur Symp Nov 1983, Noorwijkerhaout, Netherlands, p 392

    Google Scholar 

  48. Pretorius WA (1971) Water Res 5: 681

    Article  CAS  Google Scholar 

  49. Lettinga G, de Zeeuw W, Ouborg E (1981) Water Res 15: 171

    Article  CAS  Google Scholar 

  50. Lettinga G, van Velsen AFM (1974) H2O 7: 281

    Google Scholar 

  51. Lettinga G, Pette K Ch, de Vletter R, Wind E (1977) H2O 10: 526

    Google Scholar 

  52. Lettinga G (1978) Feasibility of anaerobic digestion for the purification of industrial wastewaters. In: 4th Eur Sewage and Refuse Symp. EAS, Munich

    Google Scholar 

  53. Godwin SJ, Wase DAJ, Forster CF (1982) Process Biochem 17: 33

    CAS  Google Scholar 

  54. Sayed S (1981) Anaerobic treatment of slaughterhouse waste. In: 2nd Int Symp on Anaerobic Digestion, 6–11 Sept., Travemünde, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stronach, S.M., Rudd, T., Lester, J.N. (1986). Single-Stage Non-Attached Biomass Reactors. In: Anaerobic Digestion Processes in Industrial Wastewater Treatment. Biotechnology Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71215-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71215-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71217-3

  • Online ISBN: 978-3-642-71215-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics