Forms of Biomass

  • Sandra M. Stronach
  • Thomasine Rudd
  • John N. Lester
Part of the Biotechnology Monographs book series (BIOTECHNOLOGY, volume 2)

Abstract

Microbial cells exist in a range of sizes, shapes and phases of growth, individually or aggregated into various microstructures. These conditions are of practical significance in anaerobic digestion since the form of the biomass is likely to have a significant effect on organism survival and nutrient transfer, and thus the efficiency of the overall digestion process. In a turbulent system, attached biomass can persist whilst cells in suspension are lost with the effluent [1]. Abiotic suspended particles may be utilised as adhesion sites for bacteria, aiding their persistence by enhanced sedimentation and hence their avoidance of washout in the effluent. Microstructural forms of biomass are shown in Fig. 11; these can be major determinants of mass transfer. Formation of a particular structural aggregate depends on several factors including the size range of cells within the microbial population and the location of each individual cell relative to other cells and the medium, for example at a gas/liquid interface. Non-uniform gradients of organic compounds, ions, enzymes and conductivity (due to bacterial metabolism) exist as the aggregates are non-homogeneous, filamentous forms sometimes predominating.

Keywords

Clay Glycerol Convection Polysaccharide Adenosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bungay HR, Bungay ML, Haas CN (1983) Engineering at the microorganism scale. In: Tsao GT (ed) Ann reports on fermentation processes, vol 6. Academic Press, New York London, p 149Google Scholar
  2. 2.
    Rutter PR (1980) The physical chemistry of the adhesion of bacteria and other cells. In: Curtis ASG, Pitts JD (eds) Cell adhesion and motility: British Soc for Cell Biol, Symp 3. Cambridge University Press, Cambridge, p 103Google Scholar
  3. 3.
    Dolowy K (1980) A physical theory of cell-cell and cell-substratum interactions. In: Curtis ASG, Pitts JD (eds) Cell adhesion and motility: British Soc for Cell Biol, Symp 3. Cambridge University Press, Cambridge, p 39Google Scholar
  4. 4.
    Characklis WG, Cooksey KE (1983) Adv Appi Microbiol 29: 93CrossRefGoogle Scholar
  5. 5.
    Marshall KC (1976) Interpretation in microbiol ecology. Harvard University Press, Cambridge, Mass London, p 1Google Scholar
  6. 6.
    Fletcher M (1979) The attachment of bacteria to surfaces in aquatic environments. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London New York San Fransisco, p 87Google Scholar
  7. 7.
    Derjaguin BV, Landau L (1941) Acta Physicochimica URSS 14: 633Google Scholar
  8. 8.
    Verwey EJW, Overbeek JThG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Rogers HJ (1979) Adhesion of microorganisms to surfaces: some general considerations on the role of the envelope. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London New York San Fransisco, p 29Google Scholar
  10. 10.
    Dexter SC, Sullivan JD, Williams J, Watson SW (1975) Appi Microbiol 30: 298Google Scholar
  11. 11.
    Pethica BA (1979) Microbial cell adhesion. In: Berkeley RCW, Lynch JM, Meiling J, Rutter PR, Vincent B (eds) Microbial adhesion to surfaces. Ellis Horwood, Chichester, p 19Google Scholar
  12. 12.
    Lips A, Jessup NE (1979) Colloidal aspects of bacterial adhesion. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London New York San Francisco, p 5Google Scholar
  13. 13.
    Dehneke B (1975) J Colloid Interface Sci 40: 1CrossRefGoogle Scholar
  14. 14.
    Derjaguin BV, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53: 314CrossRefGoogle Scholar
  15. 15.
    Krupp H (1967) Adv Colloid Interface Sci 1: 111CrossRefGoogle Scholar
  16. 16.
    Trulear MG, Characklis WG (1982) J Water Pollut Control Fed 54: 1288Google Scholar
  17. 17.
    Costerton JW (1984) Dev Ind Microbiol 25: 363Google Scholar
  18. 18.
    Humphrey BA, Dickson MR, Marshall KC (1979) Arch Microbiol 120: 231CrossRefGoogle Scholar
  19. 19.
    Nishikawa S, Kuriyama M (1968) Water Res 2: 811CrossRefGoogle Scholar
  20. 20.
    Brown MJ, Lester JN (1979) Water Res 13: 817CrossRefGoogle Scholar
  21. 21.
    Pavoni JL, Tenney MW, Echelberger WF (1972) J Water Pollut Control Fed 44: 414Google Scholar
  22. 22.
    Sutherland IW (1977) Bacterial polysaccharides. In: Sutherland IW (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, New York, p 27Google Scholar
  23. 23.
    Marrie TJ, Nelligan J, Costerton JW (1982) Circulation 66: 1339CrossRefGoogle Scholar
  24. 24.
    Costerton JW, Irvin RT, Cheng K-J (1981) Ann Rev Microbiol 35: 399CrossRefGoogle Scholar
  25. 25.
    Ruseska I, Robbins J, Costerton JW, Lashen ES (1982) Oil Gas J 80 (10): 253Google Scholar
  26. 26.
    Howell JA, Atkinson B (1976) Water Res 18: 307CrossRefGoogle Scholar
  27. 27.
    Powell MS, Slater NKH (1982) Biotechnol Bioeng 24: 2527CrossRefGoogle Scholar
  28. 28.
    Messing RA (1983) Bioenergy production and pollution control with immobilized microbes. In: Tsao GT (ed) Ann reports on fermentation processes, vol 6. Academic Press, New York London, p 23Google Scholar
  29. 29.
    Messing RA, Stineman TL (1983) Annals NY Acad Sci 413: 501CrossRefGoogle Scholar
  30. 30.
    Pike EB, Curds CR (1971) Soc Appi Bacteriol Symp 1: 123Google Scholar
  31. 31.
    Melik DH, Fogler HS (1984) J Colloid Interface Sci 101: 72CrossRefGoogle Scholar
  32. 32.
    Melik DH, Fogler HS (1984) J Colloid Interface Sci 101: 84CrossRefGoogle Scholar
  33. 33.
    Daniels S (1974) AIChE Symp Ser 70 (136): 266Google Scholar
  34. 34.
    Ash SG (1979) Adhesion of microorganisms in fermentation processes. In: Ellwood DC, Meiling J, Rutter P (eds) Adhesion of microorganisms to surfaces. Academic Press, London, New York San Francisco, p 57Google Scholar
  35. 35.
    Forster CF (1968) Water Res 2: 767CrossRefGoogle Scholar
  36. 36.
    Forster CF (1971) Water Res 5: 861CrossRefGoogle Scholar
  37. 37.
    McLoughlin AJ, Vallom JK (1984) J Appi Bacteriol 57: 485CrossRefGoogle Scholar
  38. 38.
    Mitchell P (1966) Biol Rev 41: 445CrossRefGoogle Scholar
  39. 39.
    Hamilton WA (1977) Energy coupling in substrate and group translocation. In: Haddock BA, Hamilton WA (eds) Microbial energetics: 27th Symp Soc for Gen Microbiol. Cambridge University Press, Cambridge, p 185Google Scholar
  40. 40.
    Treweek GP, Morgan JJ (1977) J Colloid Interface Sci 60: 258CrossRefGoogle Scholar
  41. 41.
    Napper DH (1977) J Colloid Interface Sci 58: 390CrossRefGoogle Scholar
  42. 42.
    Pethica BA (1961) Expt Cell Res Suppl 8: 123CrossRefGoogle Scholar
  43. 43.
    Tenney MW, Stumm WJ (1965) J Water Pollut Control Fed 32: 1370Google Scholar
  44. 44.
    Busch PL, Stumm WJ (1968) Environ Sci Technol 2: 49CrossRefGoogle Scholar
  45. 45.
    Jewell WJ, Switzenbaum MS, Morris JW (1981) J Water Pollut Control Fed 53: 482Google Scholar
  46. 46.
    Parker DS, Kaufmann WJ, Jenkins D (1971) J Water Pollut Control Fed 43: 1817Google Scholar
  47. 47.
    Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG (1979) Water Res 13: 571CrossRefGoogle Scholar
  48. 48.
    Lettinga G, van Velsen AFM, de Zeeuw W, Hobma SW (1979) Feasibility of the upflow anaerobic sludge blanket (UASB) process. In:Proc 1979 Nat Conf on Environ Eng July 9–11. ASCE, San Francisco, p 35Google Scholar
  49. 49.
    Pipyn P, Verstraete W (1979) Biotechnol Lett 1: 495CrossRefGoogle Scholar
  50. 50.
    Ross WR (1984) Water SA 10: 197Google Scholar
  51. 51.
    Hulsoff-Pol LW, de Zeeuw WJ, Velzeboer CTM, Lettinga G (1983) Water Sci Technol 15: 291Google Scholar
  52. 52.
    Klapwijk A, Smit H, Moore A (1981) Denitrification of domestic wastewater in an upflow sludge blanket reactor without carrier material for the biomass. In: Cooper PF, Atkinson B (eds) Biological fluidised bed treatment of water and wastewater. Ellis Horwood, Chichester, p 205Google Scholar
  53. 53.
    Bochem HP, Schoberth SM, Sprey B, Wengher P (1982) Can J Microbiol 28: 500CrossRefGoogle Scholar
  54. 54.
    Bucke C (1983) Biochem Soc Symp 48: 25Google Scholar
  55. 55.
    Venkatasubramanian K, Veith WR (1979) Prog Ind Microbiol 15: 61Google Scholar
  56. 56.
    Marconi W, Moriski F (1979) Appi Biochem Bioeng 2: 219Google Scholar
  57. 57.
    Kierstan M, Bucke C (1977) Biotechnol Bioeng 19: 387CrossRefGoogle Scholar
  58. 58.
    Cheetham PSJ, Blunt KW, Bucke C (1979) Biotechnol Bioeng 21: 2155CrossRefGoogle Scholar
  59. 59.
    Paul F, Vignais PM (1980) Enzyme Microbiol Technol 2: 281CrossRefGoogle Scholar
  60. 60.
    White DC (1983) Symp Soc Gen Microbiol 34: 37Google Scholar
  61. 61.
    Davis WM, White DC (1980) Appi Environ Microbiol 40: 539Google Scholar
  62. 62.
    White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Oecologia 40: 51CrossRefGoogle Scholar
  63. 63.
    King JD, White DC, Taylor CW (1977) Appi Environ Microbiol 33: 1177Google Scholar
  64. 64.
    White DC, Bobbie RJ, Morrison SJ, Oosterhof DK, Taylor CW, Meeter DA (1977) Limnol Oceanography 22: 1089CrossRefGoogle Scholar
  65. 65.
    Kates M (1964) Adv Lipid Res 2: 17Google Scholar
  66. 66.
    Bobbie RJ, White DC (1980) Appl Environ Microbiol 39: 1212Google Scholar
  67. 67.
    Moriarty DJW (1977) Oecologia 26: 317CrossRefGoogle Scholar
  68. 68.
    King JD, White DC (1977) Appl Environ Microbiol 33: 777Google Scholar
  69. 69.
    Fazio SD, Mayberry WR, White DC (1979) Appl Environ Microbiol 38: 349Google Scholar
  70. 70.
    Saddler JN, Wardlaw AC (1980) Antonie van Leeuwenhoek 46: 27CrossRefGoogle Scholar
  71. 71.
    LaBach JP, White DC (1969) Lipid Res 10: 528Google Scholar
  72. 72.
    White DC, Tucker AN (1970) Lipids 5: 56CrossRefGoogle Scholar
  73. 73.
    Rizza B, Tucker AN, White DC (1970) J Bacteriol 101: 84Google Scholar
  74. 74.
    White DC, Tucker AN, Sweeley CC (1969) Biochim Biophys Acta 187: 527Google Scholar
  75. 75.
    van den Berg L, Lentz CP, Athey RJ, Rooke EA (1974) Biotechnol Bioeng 16: 1459CrossRefGoogle Scholar
  76. 76.
    Delafontaine MJ, Naveau HP, Nyns EJ (1979) Biotechnol Lett 1: 71CrossRefGoogle Scholar
  77. 77.
    Valke D, Verstraete W (1983) J Water Pollut Control Fed 55: 1191Google Scholar
  78. 78.
    Lawrence PL (1969) J Water Pollut Control Fed 41: R1Google Scholar
  79. 79.
    van den Berg L, Patel GB, Clark DS, Lentz CP (1976) Can J Microbiol 22: 1312CrossRefGoogle Scholar
  80. 80.
    Binot RA, Naveau HP, Nyns EJ (1981) Biotechnol Lett 3: 623CrossRefGoogle Scholar
  81. 81.
    Pause SM, Switzenbaum MS (1984) Biotechnol Lett 6: 77CrossRefGoogle Scholar
  82. 82.
    Tsezos M, Benedek A (1980) Water Res 14: 689CrossRefGoogle Scholar
  83. 83.
    Rittmann BE, McCarty PL (1980) Biotechnol Bioeng 22: 2343CrossRefGoogle Scholar
  84. 84.
    Rittmann BE, McCarty PL (1980) Biotechnol Bioeng 22: 2359CrossRefGoogle Scholar
  85. 85.
    Rittmann BE (1982) Biotechnol Bioeng 24: 501CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Sandra M. Stronach
    • 1
  • Thomasine Rudd
    • 1
  • John N. Lester
    • 1
  1. 1.Public Health Engineering Laboratory, Department of Civil EngineeringImperial CollegeLondonUK

Personalised recommendations